1N-05-CR 243106 P-342

PRELIMINARY DESIGN OF A FAMILY OF THREE CLOSE AIR SUPPORT AIRCRAFT

PREPARED FOR:

USRA NASA GRANT #NGT-8001

PREPARED BY:

BRIAN COX
PAUL DARRAH
WAYNE LUSSIER
NIKOS MILLS

UNIVERSITY OF KANSAS

AE 622 17 MAY 1989

TRAM LEADER:

JEFF TUSCHHOFF

FACULTY ADVISOR:

JAN ROSKAM

NASA ADVISOR:

JACK MORRIS

(NASA-CR-186070) PRELIMINARY DESTGN DE A FAMILY DE THREE CLOSE AIR SUPPORT AIRCRAFT (Kansas Univ.) 342 p CSCL DIC N90-15751

Unclas 63/05 0243106

PRELIMINARY DESIGN OF A FAMILY OF THREE CLOSE AIR SUPPORT AIRCRAFT

PREPARED FOR:

USRA NASA GRANT #NGT-8001

PREPARED BY:

BRIAN COX
PAUL DARRAH
WAYNE LUSSIER
NIKOS MILLS

UNIVERSITY OF KANSAS

AE 622

17 MAY 1989

TEAM LEADER:

JEFF TUSCHHOFF

FACULTY ADVISOR:

JAN ROSKAM

NASA ADVISOR:

JACK MORRIS

Abstract

A family of three Close Air Support aircraft is presented. These aircraft are designed with commonality as the main design objective to reduce the life cycle cost. The aircraft are low wing, twin-boom, pusher turbo-prop configurations. The amount of information displayed to the pilot was reduced to a minimum to greatly simplify the cockpit. The aircraft met the mission specifications and the performance and cost characteristics compared well with other CAS aircraft. The concept of a family of CAS aircraft seems viable after preliminary design.

TABLE OF CONTENTS

	page
Summary	i
List of Symbols	• • •
1. Introduction	
2. Close Air Support Aircraft Definition	
2. Close Air Support Aircraft Definition	9.
2.1 Specifications for an Advanced CAS Aircraft (Good).	2 .
2.2 Specifications for a Modest Technology CAS Aircraft	2
(Bad)	3
2.3 Specifications for a Low Cost CAS Aircraft (Ugly)	
3. A Historical Survey of CAS Aircraft	
4. Configuration Description	
4.1 Overall Configuration	
4.2 Forward Fuselage	
4.2.1 Visibility	.21
4.2.2 Cockpit Instrumentation and Avionics	
Systems	
4.3 Wing	
4.4 Propulsion System	
4.4.1 Power Plant	
4.4.2 Engine Removal	.30
4.5 Weapons Systems	.31
4.6 Landing Gear	.39
5. Weight and Balance	.41
5.1 Weight Penalties due to Commonality	.41
5.2 Balance	
5.3 Moment of Inertia	
6. Performance	
6.1 Maximum Speed	
6.2 Combat Ceiling	
6.3 Combat Radius	
6.4 Maneuvering Load Factor	.60
6.5 Endurance	
6.6 Military Climb Requirements	
6.7 Take-off and Landing Groundrun	
7. Stability and Control Analysis	
7.1 Basic Aerodynamic Parameters	
7.1.1 Airfoil Parameters	
7.1.2 Planform Parameters	
7.1.2 Planform Parameters	
7.1.4 Downwash in the Wing Wake	
7.1.5 Airplane Aerodynamic Center Location	
7.2 Stability and Control Analysis	
7.2.1 Aerodynamic Forces and Moments	
7.2.2 Static and Dynamic Longitudinal Stability	.09
7.2.2.1 Static Longitudinal Stability	
7.2.2.2 Dynamic Longitudinal Stability	
7.2.3 The Trim Diagram	
7.2.4 Dynamic Directional Stability	
7.3 Stability and Control Summary	. 76

8. Structural Design of the Good, Bad, and Ugly Aircraft9
8.1 Materials Selection94
8.2 Structural Layout and Design of the Good, Bad, and
Ugly Aircraft9
8.2.1 Structural Design of the Wing9
8.2.2 Fuselage Structural Layout9'
8.2.3 Boom and Empennage Structural Layout99
8.3 Detailed Structural Layout of the Landing Gear and
Boom Attachments, Nose Section, and Horizontal Tail
Extensions99
8.3.1 Boom and Main Gear Attachment10
8.3.2 Horizontal Tail Extension Attachment116
8.3.3 Nose Section Detailed Structural Layout12
8.4 Wing Component Sizing
8.4 wing Component Sizing
8.5 Flutter Analysis of the Wing
9. Systems
9.1 Flight Control System
9.2 Hydraulic System
9.3 Electrical System
9.4 Fuel System
9.5 Environmental and Anti-Ice System
9.6 Internal Armament and Avionics
10. Life Cycle Cost
10.1 Life Cycle Cost Method and Results
10.1.1 DT&E and Acquisition Costs
10.1.2 Operations and Support Costs
10.2 Effects of Commonality
11. Cost and Performance Comparison
11.1 Performance Comparison
11.1.1 Armament Comparison
11.1.2 Summary of Performance and Payload
Comparison
11.2 Cost Comparison160
12. Conclusions and Recommendations
12.1 Conclusions
12.2 Recommendations
13. References
Appendix A: Weight and Balance CalculationsA
Appendix B: Performance CalculationsB
Appendix B. Performance Calculations
Appendix C: Stability and Control Calculations
Appendix D: Wing Component Sizing and Flutter Analysis
Calculations
Appendix E: Life Cycle Cost Analysis CalculationsE

LIST OF SYMBOLS

Symbol A	Definition Aspect ratio	<u>Units</u>
a	Alpha; angle of attack	[deg]
a o 1	Airfoil zero lift angle of attack	[de g]
b	Span	[in,ft]
ē	Mean geometric chord	[in,ft]
$^{\mathrm{C}}$	Drag coefficient	
C D a	Variation of drag coefficient with angle of attack	[/rad]
C D u	Variation of drag coefficient with speed (i.e. speed damping)	
$^{\mathrm{L}}$	Lift coefficient	
c l a	-Airfoil lift curve slope	[/rad]
C L a	Airplane lift curve slope	[/rad]
C L. a	Variation of lift coefficient with rate of change of angle of attack	[/rad]
$^{\text{c}}_{_{\text{B}}}$	Variation of rolling moment coefficient with sideslip angle	[/rad]
^C 1 _d A	Variation of rolling moment coefficient with aileron angle (i.e. lateral control power)	[/rad]
^C 1 _d _R	Variation of rolling moment coefficient with rudder angle	[/rad]
C _L o	Lift coefficient for zero angle of attack, zero elevator angle and zero stabilizer angle	
C L d e	Variation of lift ceofficient with elevator angle	[/rad]
c ₁ p	Variation of rolling moment coefficient with roll rate	[/rad]

Symbol C L q	Definition Variation of lift coefficient with pitch rate	Units [/rad]
c 1	Variation of rolling moment coefficient with yaw rate	[/rad]
C _L u	Variation of lift coefficient with speed	
C n B	Variation of yawing moment coefficient with sideslip angle	[/rad]
C n d	Variation of yawing moment coefficient with aileron angle	[/rad]
c n d _R	Variation of yawing moment coefficient with rudder angle	[/rad]
C n p	Variation of yawing moment coefficient with roll rate	[/rad]
C m a.	Variation of pitching moment coefficient with angle of attack (i.e. static longitudinal stability)	[/rad]
C m. a	Variation of pitching moment coefficient with rate of change of angle of attack	[/rad]
C m d e	Variation of pitching moment coefficient with elevator angle (i.e. longitudinal control power)	[/rad]
C m	Pitching moment coefficient for zero angle of attack, zero elevator angle and zero stabilizer as	ngle
C m q	Variation of pitching moment coefficient with pitch rate	[/rad]
C m u	Variation of pitching moment coefficient with spec	ed
C n r	Variation of yawing moment coefficient with yaw rate	[/rad]
C y B	Variation of side force coefficient with sideslip angle	[/rad]
C y d _R	Variation of side force coefficient with rudder angle	[/rad]

Symbol C y p	Definition Variation of sideforce coefficient with roll rate	Units [/rad]
C y	Variation of side-force coefficient with yaw rate	[/rad]
de/da	Downwash angle per angle of attack	
d a	Aileron deflection angle	[deg]
d f ave	Fuselage average diameter	[ft]
i h	Horizontal tail incidence angle	[deg]
$^{1}\mathbf{f}$	Fuselage length	[ft]
ı v	Vertical tail aerodynamic center horizontal location behind the airplane center of gravity location	[ft]
M	Mach number	
n	Load factor	
S	Area	[sqf]
S BS	Body side area	[sqf]
$\nabla_{\mathbf{h}}$	Horizontal tail volume coefficient	
w n	Natural frequency	
M	Weight	[lbs]
\overline{x}_{ac}	Aerodynamic center location / mean geometric chore	i
x cg	Center of gravity location / mean geometric chord	
\overline{x}_{ref}	Reference point location / mean geometric chord	
x w	Distance of center of gravity to wing aerodynamic center (+) if c.g. is forward of a.c.	[ft]
zeta	Damping ratio	
z f	Vertical height of fuselage at wing root chord	[ft]

<u>Symbol</u>	<u>Definition</u>	Units
z	Vertical tail aerodynamic center vertical	[ft]
v	location above (+) or below (-) the airplane	
	center of gravity location	
z	Vertical distance from the wing root chord	[ft]
W	to the fuselage average diameter center location	

Subscripts:

aft aft forward fwd Horizontal tail h v Vertical tail Half chord c/2 Quarter chord c/4 Effective eff Take-off TO Operating empty OE E Empty Short period Phugoid SP P

Acronyms:

	•
AC	Aerodynamic center
API	Armor piercing incendiary
BL	Buttock line
CAS	Close Air Support
CG	Center of gravity
CGR	Climb gradient
CRT	Cathode ray tube
ECM	Electronic counter measure
FLIR	Forward looking infrared radar
FS	Fuselage station
GPS	Global positioning system
HDD	Heads down display
HEI	High explosive incendiary
HUD	Heads up display
IFF	Identify friend or foe
MG	Main gear
MGC	Mean geometric chord
NG	Nose gear
NVG	Night vision goggles
RAT	Ram Air Turbine
SL	Sea level
SLS	Sea level standard
TA	Terrain avoidance
TF	Terrain follow
TRNS	Terrain Reference Navigation System
UHF	Ultra high frequency
VHF	Very high frequency
WL	Water line

1. INTRODUCTION

In the event of a Warsaw Pact - NATO confrontation, the main attack by the Warsaw Pact forces will most likely focus on the Fulda Gap in West Germany. This predicted attack will be spearheaded by the Soviet ground forces stationed in East Germany. The attack force could consist of as many as 90+divisions with each division containing roughly 300 main battle tanks and 1,000 other tracked vehicles. To prevent such an assault from succeeding, a means of destroying Soviet battle tanks must be introduced.

There are three weapons available to perform the anti-tank mission: I) tank against another tank, II) a well trained soldier armed with anti-tank weapons, and III) Close Air Support (CAS) aircraft (both helicopters and fixed-wing aircraft).

Through the sponsorship of a NASA/USRA grant, a team of students concluded that a family of three CAS aircraft is needed to help perform the anti-tank missions. The aircraft are:

- A) An aircraft to take out advancing armor and highly defended targets (such as fuel or ammunition depots, enemy headquarters, etc.) in all weather conditions.
- B) An aircraft with reduced capabilities from the aforementioned aircraft (less range and less payload) but with a lower cost that can attack tanks in fair weather and night/day conditions.
- C) A very low cost aircraft that, through shear numbers, halts the advancing tank formations in fair weather conditions.

The three aircraft have been taken through preliminary design. The purpose of this report is to present this work. Reference 1 - 7 are reports leading up to this report. Shelby J. Morris, Jr. of NASA Langley Research Center is the technical adviser for the project. Carol Hopf is the contact at the Universities Space Research Association.

The mission specifications and profiles are presented in Chapter 2 and a brief history of Close Air Support aircraft is presented in Chapter 3. Chapter 4 discusses the configurations. The weight and balance for the aircraft is presented in Chapter 5. Chapter 6 gives the performance characteristics while Chapter 7 presents the stability and control. The structural and system layouts are presented in Chapters 8 and 9. A life cycle cost analysis is shown in Chapter 10. Chapter 11 compares these three aircraft with other CAS aircraft with regard to performance and cost. The conclusions and recommendations are discussed in Chapter 12. The detailed engineering calculations are provided in the appendices.

2. CLOSE AIR SUPPORT AIRCRAFT DEFINITION

The purpose of this chapter is to present the mission specifications and mission profiles for a family of three close air support (CAS) aircraft. Commonality will be incorporated between the three aircraft to a large extent. Typical mission/armament combinations will also be addressed. These aircraft will be utilized by Army ground forces to provide forward close air support.

Several hypothetical battle scenarios have been investigated by the design team (Reference 1). The primary threat appears to be from eastern bloc countries, centered around the Soviet Union. Soviet ground forces rely heavily on tanks, armored fighting vehicles, and artillery. Since the main battle tanks are the centerpiece of a Soviet attacking force, the primary goal of close air support aircraft is to destroy the advancing tanks. Other high priority targets will also be of interest to CAS aircraft.

The three mission specifications and accompanying mission profiles are the subject of this section. The three CAS aircraft consist of:

- 1) A highly capable advanced close air support aircraft.
- 2) A modest technology, moderate cost ground attack aircraft.
- 3) A simple, low cost ground attack aircraft.

The aircraft are named:

The Good - Aircraft 1
The Bad - Aircraft 2
The Ugly - Aircraft 3

2.1 Specifications for an Advanced Close Air Support Aircraft (the Good)

The main goal of the advanced close air support aircraft is to support Army ground forces in day or night, all-weather operations. This aircraft will incorporate a high technology level, and may be seen as a follow-on to the Fairchild A-10. Although assigned primarily to heavy armor engagement, high priority and heavily defended targets will be delegated to this aircraft. The mission specification for the airplane is presented in Table 2.1, with the accompanying mission profile in Figure 2.1.

<u>Table 2.1 - Mission Specification for an Advanced Close</u> <u>Air Support Aircraft</u>

<u>Crew</u>: 1 Pilot, full military gear

1 Martin/Baker ejection seat

Armament: One internal GPU-13/A 30mm Gatling Gun

Payload: Total payload of 10,000 lbs., to include:

1,200 rounds of 30mm anti-armor shells

Laser and infrared guided weapons

- AGM-144 Helfire - AGM-65 Maverick

- AIM-9M Sidewinder Free-fall munitions

- Mk-82 Snakeye - Mk-20 Rockeye

- SUU-30B/B Cluster Bomb

Rocket pods

- 2.75 inch rockets

- 7 and 19 round canisters

Performance: Maximum speed of 350 kts. at SL, fully loaded

Cruise speed of 250 kts. at 5,000 ft

Maximum ceiling of 15,000 ft Combat radius of 400 nm

Sustained 5g's at 150 kts, SL, fully loaded

Endurance: One hour at 5,000 ft

Powerplant: Twin engine advanced turboprop

One counter rotating propeller

Groundrun: 2,000 ft groundrun, steel planking

Avionics: All weather capability (TF/TA radar)

UHF/VHF transceiver

Secure voice and data link

GPS capability, IFF, passive ECM

Certification: Military - Ground Attack

2.2 Specifications for a Modest Technology Close Air Support Aircraft (the Bad)

The primary purpose of the modest technology aircraft is to provide close air support for forward troops, and engage enemy tanks and armored vehicles. The cost and complexity of the aircraft will be reduced by requiring only modest capabilities, as opposed to a "do-all" type mission. The mission specification for the aircraft is shown in Table 2.2, and the mission profile is presented in Figure 2.2.

Table 2.2 - Mission Specification for a Modest Technology Close Air Support Aircraft

Crew: 1 Pilot, full military gear

1 Martin/Baker ejection seat

Armament: One internal GPU-13/A 30mm Gatling Gun

Payload: Total payload of 4,100 lbs., to include:

400 rounds of 30mm anti-armor shells

Laser and infrared guided weapons

- AGM-144 Helfire

- AGM-65 Maverick

Free-fall munitions

- Mk-82 Snakeye

- Mk-20 Rockeye - SUU-30B/B Cluster Bomb

Rocket pods

- 2.75 inch rockets

- 7 and 19 round canisters

Performance: Maximum speed of 350 kts. at SL, clean

Cruise speed of 250 kts. at 5,000 ft

Combat radius of 120 nm

Sustained 5g's at 125 kts, SL, fully loaded

Endurance: Four hours at 5,000 ft

Powerplant: Twin engine advanced turboprop

One counter rotating propeller

Groundrun: 1,200 ft groundrun, soft field

Avionics: Day/Night capability (TF/TA radar)

UHF/VHF transceiver

Secure voice and data link, IFF

Certification: Military - Ground Attack

2.3 Specifications for a Low Cost Close Air Support Aircraft (the Ugly)

The mission of the low cost close air support aircraft is to engage enemy tanks. The aircraft will have limited avionics and payload, which will help reduce the price per aircraft. This will facilitate purchasing a large number of aircraft. These aircraft adhere to the philosophy of sending a relatively inexpensive airplane after a relatively inexpensive target. For example, what is the logic of sending a \$30 million dollar airplane after a \$2 million dollar tank, especially when the aircraft must destroy 30 tanks to equalize the numerical superiority (2:1) of enemy tanks to friendly air-

craft. The mission specification for the low cost aircraft is shown in Table 2.3, and the mission profile is presented in Figure 2.3.

Table 2.3 - Mission Specification for a Low Cost Close Air Support Aircraft

Crew: 1 Pilot, full military gear

1 Martin/Baker ejection seat

Armament: One internal GPU-13/A 30mm cannon

Payload: Total payload of 2,000 lbs., to include:

400 rounds of 30mm anti-armor shells

Free-fall munitions
- Mk-82 Snakeye
- Mk-20 Rockeye

- SUU-30B/B Cluster Bomb

Rocket pods

- 2.75 inch rockets

- 7 and 19 round canisters

Performance: Maximum speed of 350 kts. at SL, clean

Cruise speed of 250 kts. at 5,000 ft

Combat radius of 100 nm

Sustained 5g's at 125 kts, SL, fully loaded

Endurance: Four hours at 5,000 ft

<u>Powerplant</u>: Single engine advanced turboprop

Groundrun: 1,000 ft groundrun, soft field

Avionics: Day capability (IFR capabilities)

UHF/VHF transceiver Secure voice, IFF

Certification: Military - Ground Attack

3. A HISTORICAL SURVEY OF CAS AIRCRAFT

By the start of WWII, aircraft had begun to dominate the course and outcome of combat. Strategic bombers pounded cities and military targets, and fighters cleared the skies of enemy aircraft, allowing the bombers to reach their targets with some hope of returning to base. It was in WWII that the combat air support (CAS) mission was refined and developed into a deadly method of fighting. Fighters and light bombers would fly low and fast, strafing and bombing enemy troops and armor. Essentially, a CAS airplane is armed and used much like an airborne tank. WWII, most CAS aircraft were converted fighters. These aircraft usually had internal cannons, and carried around 2000 lb of free fall bombs and rockets. They would fly low and fast, using the terrain as cover against enemy fighters and anti-aircraft guns. When they reached their targets, they would strafe and bomb, and then climb out, ready to fight their way home as fighters. P-51 and P-47 were used extensively in this role in Europe, and the P-38 was used extensively in the North African and Italian campaigns. Both the P-38 and British versions of the P-51 were cannon armed, while the P-47 and American P-51s carried 50 caliber machine guns. These aircraft also were heavily armored and had a reputation for bringing their pilots home even after The Ju-87 and the A-36 used sustaining extensive battle damage. different tactics, however. The A-36 was an attack version of the P-51A, and was fitted with dive brakes, and the Ju-87 traded speed for armor and was dedicated to the dive bombing role. The Ju-87 could also carry two 37mm anti-tank cannons, each with 12 rounds of ammunition. These aircraft would fly to the target at medium altitudes, and then enter near vertical dives, releasing their bombs just in time to make an effective pullout. added touch, the Ju-87 had a siren on one of its landing gear fairings that would produce a loud wail as the airplane entered one of its dives.

Korea saw the introduction of the jet as a large component of the American fighting force. Jets did not have the endurance of the propeller aircraft, so CAS work was left to the A-1 Skyraider, the P-51 Mustang, and the AU-1 Corsair. The AU-1 was a dedicated attack version of the F-4U-6 Corsair. It could carry 4000 lb of bombs and rockets and four 20mm cannons in its wings. These aircraft spent most of their time hitting troops, bridges, and supply routes.

In Vietnam, the only aircraft that could successfully perform the CAS mission was the aging A-1. The attack fighters of the time, such as the F-105, were much too fast and could not stay over the battle field long enough to be useful to the ground troops. The A-1s were vulnerable to SAMs, but they were the only aircraft available for the CAS role. The A-7 Corsair II was a step in the right direction, but it was still not a true CAS airplane. Most of the CAS work toward the end of the war was

being performed by helicopters which, while effective, were lightly armed.

Since Vietnam, the CAS mission has gained a few aircraft. The AV-8B Harrier can operate from forward bases, and can be an effective CAS airplane. The AV-8B version can even boast of a significant battle field endurance. Unfortunately, the Harriers must be taken to well equipped depot sites when significant engine maintenance is needed. Argentina has developed a dedicated COIN (counter insurgence) aircraft called the Pucara. The COIN mission differs from CAS only in that the target troops are not expected to have modern anti-aircraft weapons. Finally, the king of CAS aircraft is the A-10 Thunderbolt II (a.k.a. "Warthog"). The A-10 was designed to carry a heavy payload from a forward base to the battle field, loiter there for 1.5 hours, bomb and strafe as needed, and then return to the forward base even if heavily damaged. The A-10 has the unique ability to rapidly destroy tanks by either strafing or firing Maverick missiles. Since its production, the role of the A-10 has changed from CAS to pure tank-busting, but it has retained its CAS capability. The newest CAS airplane is the Soviet Frogfoot. Similar to the A-10 in size, the Frogfoot closely resembles the Northrop A-9, one of the competitors in the fly off that led to the purchase of the A-10. The Frogfoot has tank busting capabilities, but not to the degree possessed by the A-10. Instead, the Frogfoot concentrates on the ground support side of CAS. One difficulty with CAS still remains; the CAS aircraft currently in use are operated by the Air Force, not the Army. There are good reasons for this, but this causes communication difficulties, and it prevents the Army from having the aircraft that it wants. The Good, Bad, and Ugly aircraft presented here are designed to be used by the Army, and thus fill a gap in the U.S. arsenal.

Figure 3.1 shows the threeviews of the aircraft discussed in this chapter.

Figure 3.1a Threeviews of Close Air Support Aircraft

Copied from Reference 8

Figure 3.1b Threeviews of Close Air Support Aircraft

Copied from Reference 8

4. CONFIGURATION DESCRIPTION

The purpose of this chapter is to present the configuration of the Good, Bad and Ugly aircraft. The following aspects will be included:

- 1) Overall configuration
- 2) Forward fuselage
- 3) Wing
- 4) Propulsion systems
- 5) Weapons systems
- 6) Landing gear

Throughout the design of each aircraft, an emphasis was placed on achieving as much commonality as possible between the aircraft, while maintaining the feasibility of each.

4.1 Overall Configuration

The threeviews for the Good, Bad and Ugly aircraft are presented in Figures 4.1 through 4.3. The major design decisions that were made are discussed in this section, along with the reasoning behind each. Commonality considerations played a crucial role in most of the design decisions. Because of the relatively large difference in take-off weight, payload and power requirements between the three aircraft, the number of configurations that would retain a high degree of commonality were limited.

The overall configuration selected for the three aircraft is of the twin boom type. The reasons behind this decision are listed below:

- 1) The engines can be mounted in a pusher configuration, closer to the center of gravity of the aircraft, giving more favorable weight and balance characteristics. Furthermore, adverse yaw due to engine-out conditions is avoided when the engines are mounted on the centerline of the aircraft.
- 2) It is difficult for persons to run into the propeller while running up the engines on the ground.
- 3) A pusher configuration allows for excellent forward visibility, compared to tractor configurations. This is an important consideration for ground attack aircraft.
- 4) A pusher configuration allows for almost 100% commonality in the cockpit section.
- 5) The twin boom empennage structure allows for a high degree of commonality in the empennage surfaces as well as good survivability.

Basic inboard profiles for each of the three aircraft are presented in Figures 4.4 through 4.6. The cockpit section and nose landing gear arrangement is common for the three aircraft. The 30 mm Gatling gun is located aft of the nose gear. It is placed at an angle such that the barrel that is firing is along the centerline of the aircraft, facilitating sighting. A 1,200 round drum is used for the Good aircraft, while the Bad and Ugly have 400 round drums.

The fuselages of the aircraft are divided into three separate sections:

- 1) Forward section: cockpit, nose gear, radar
- 2) Middle section: wing/fuselage intersection
- 3) Aft section: engine installation

The forward fuselage section of the three aircraft consists primarily of the cockpit, nose gear, and necessary avionics. It is common between the Good, Bad and Ugly. The size of the cockpit section was dictated by the need to accommodate the advanced avionics systems and radar of the Good aircraft. Nose gear stowage volume also impacted on the design of the forward section.

The middle section is different for each aircraft. However, all three retain the same cross section, which is dictated by the diameter of the ammunition drum of the Good airplane. The length of the fuselage varies between the three, though the wing/fuselage intersection is common.

The aft fuselage section is the same for the three aircraft. The size of this section is determined by the engine volume specifications for the Good airplane. Because the avionics and powerplant for the Bad and Ugly occupy less space than for the Good aircraft, the two smaller aircraft do not utilize all the space available in the aft fuselage section.

The design of the empennage was determined by the selection of the twin boom configuration. As shown in Figures 4.1 through 4.3, the three aircraft have common vertical tails and horizontal tail bars, located above the vertical tails. This ensures that the empennage is kept out of the prop-wash. Although this location reduces the effectiveness, it will increase the fatigue life of the structure. The Good and Bad have horizontal tail fins extending from the horizontal tail bar to increase the tail area.

The tail booms have been sized to account for:

- 1) Necessary empennage support strength
- 2) Landing gear size and stowage
- 3) Commonality

The Good and Bad use a common boom. The aft portion of the

Figure 4.4 Inboard Profile for the Good Aircraft

Figure 4.5 Inboard Profile for the Bad Aircraft

Figure 4.6 Inboard Profile for the Ugly Aircraft

booms is used on the Ugly also. The boom attachment points, located ten feet on either side of the aircraft centerline, are also common for the three aircraft. Although this type of structure imposes a weight penalty on the Bad and Ugly aircraft, the benefit to commonality is viewed as substantial.

4.2 Forward Fuselage

The forward fuselage is common to all three aircraft and is shown in Figure 4.7. The size of the cockpit section was determined primarily from the volume requirements of the Good airplane. Among these volume requirements was the necessity to accommodate a radar dish and other advanced avionics in the forward fuselage. The cannon was positioned under the fuselage on the centerline. This location allows the pilot to simply aim at a target at any distance and achieve a maximum probability of destroying it. The centerline position also eliminates any adverse yawing moment which may occur while firing the gun. Positioning the gun under the fuselage also helps avoid gun exhaust gases from being sucked into the engine inlets. This positioning also prevents the pilot from being blinded when the cannon is fired at night.

The escape system consists of a Martin Baker Mark 11 ejection seat. This ejection seat was designed specifically for use in turboprop aircraft.

4.2.1 Visibility

A high degree of visibility was a major concern in the design of a family of close support aircraft. The following visibility requirements were determined for these aircraft:

- 1) 20 deg down over the nose
- 2) 45 deg down over the sides
- 3) 5 deg down over the back
- 4) Unlimited visibility above

By utilizing these values, it was determined that an F-16-type canopy would be the most suitable. To determine if the visibility requirements were met by an F-16 canopy, a visibility pattern was constructed. By assuming that the pilot has one eye at the location shown in Figure 4.7, the angles for the visibility pattern were determined. Figure 4.8 shows this pattern for the Good, Bad and Ugly.

4.2.2 Cockpit Instrumentation and Avionics Systems

The main system concept is to provide a high degree of integration between the various systems. The result is a combined system that reduces pilot workload, enhances the mission effectiveness, and improves the overall aircraft performance and reliability.

FUSELAGE STATION, F.S. ~ INCHES

Figure 4.7 Forward Fuselage

Figure 4.8 Visibility Pattern of the Pilot

The main effort in the design of the cockpit instrumentation is to útilize a minimum of controls, reducing the pilot workload.

In addition, control must be provided for the array of radio and communications equipment, propulsion system, weapons, and HUD selection.

Communications equipment comprises a major portion of cockpit equipment in modern day fighters, and should be kept to a minimum. The following communications equipment is the minimum included in the three aircraft:

- 1) UHF/VHF transceiver with main and standby modes
- 2) Secure voice and data link
- 3) Voice actuation for communication control

The sensors incorporated in these aircraft are also kept to a minimum. The following sensors are included:

- 1) Barometric and radar altimeters
- 2) Attitude and heading reference system
- 3) Navigation sensors
 - a) Inertial Navigation System
 - b) Global Positioning System
 - c) Terrain Referenced Navigation System (TRNS)
- 4) Forward looking infra-red (FLIR) and/or night vision goggles (NVG)
- 5) Radar for target acquisition and Search/Track for Good and Bad aircraft

The actual display involves a combination of HUD and Heads Down Display (HDD). The HUD is used to display information pertaining directly to the outside world. The HUD incorporates an advanced system involving a projection that wraps around the pilot. The images are projected on the canopy. A diagram of this proposal is provided in Figure 4.9.

The HDD presents the information not directly related to the outside world. This will include targeting and weapon status, and map representations displayed on two CRT's. Reference 6 presents the avionics and cockpit instrumentation layout in greater detail.

The cockpit design included the following items:

- 1) Advanced HUD (Canopy Projection)
- 2) Weapons selection and activation switch panel
- 3) HUD switch panel
- 4) FLIR/Night vision switch panel
- 5) 8" \times 8" CRT for map presentation
- 6) 8" x 8" CRT for weapon status and other information
- 7) Side stick controller and rudder pedals
- 8) Manual landing gear actuation
- 9) Throttle
- 10) Engine start and control switch panel

Through the use of advanced cockpit systems, the pilot is allowed to concentrate on flying the aircraft and successfully completing the mission.

4.3 Wing

The primary considerations in designing the wing planforms for the three aircraft were aerodynamic performance and commonality. All three aircraft use NACA 64A215 airfoils for the wings. The design of the wings, as shown in Figure 4.10 is as follows:

- 1) Constant 12.5 degree leading edge wing sweep.
- 2) The outboard section of the wing is the wing of the Ugly and is common to all three aircraft. The wings of the Bad and Ugly are obtained by adding additional sections to the wing of the Ugly.
- 3) To avoid tip stall behavior due to the low taper ratios of the wings, a snag is incorporated in the design of the Good.

All three aircraft have plain flaps, extending from the wing/fuselage intersection to span section 0.55. Advantages of plain flaps include simplicity of operation and ease of maintenance.

Figure 4.9 Cockpit Layout

Figure 4.10 Wing Planform Design

The Good, Bad and Ugly have a cantilever, low-wing installation. This design was guided by the following considerations:

- 1) A shorter landing gear length compared to a mid or high wing installation. Due to the soft field requirements of the Bad and Ugly, this results in a significant landing gear weight savings.
- 2) Easier mounting of under wing stores in unprepared, forward operating areas. The luxury of weapons carts to hoist the under wing stores may not be available in the staging areas for the Bad and Ugly.

4.4 Propulsion System

4.4.1 Powerplant

The Good, Bad and Ugly are all powered by advanced turboprop engines, and have the following power requirements:

1) Good: 12,000 shp

2) Bad: 5,000 shp

3) Ugly: 2,000 shp

A turboprop powerplant was selected for all three aircraft based on the following conclusions:

- 1) Provides best overall efficiency for given cruise speed and range
- 2) Low weight-to-power ratio
- 3) Small frontal area
- 4) Availability of a large number of turboprops in the 2,000 to 12,000 shp range

To provide a measure of commonality in the design, the Bad and Ugly utilize the same powerplant. The Bad has two 2,500 shp engines installed side-by-side, while the Ugly has a single 2,500 shp engine. The Good uses two 6,000 shp engines and incorporates the same installation as the Bad. The use of two engines enhances the survivability of the Bad and Good. The powerplant layouts for the Good, Bad and Ugly are shown in Figures 4.11 and 4.12.

The engine(s) are buried in the aft part of the fuselage for several reasons:

- 1) The buried engine installation does not require pods or nacelles, reducing radar cross sectional area.
- 2) A buried engine installation reduces the profile drag associated with pods or nacelles.
- 3) The aft end of the fuselage is sized by the aircraft with the largest engine displacement, allowing a common aft fuselage shell for the two remaining aircraft.

Figure 4.11 Engine Layout for the Good and Bad

Figure 4.12 Engine Layout for the Ugly

4) The pusher installation eliminates any potential interference between the 30 mm gun and the propeller.

Since the Bad and Ugly will operate from the same base of operations, the use of identical engines decreases the required parts inventory and allows for cannibalizing.

The data for the propellers for the Good, Bad and Ugly is presented in Table 4.1. The Good and Bad use counter-rotating propellers. These not only offer higher overall propulsive efficiency, but also twin engine reliability with no adverse yaw due to engine out. However, the gearboxes needed increase the complexity of the drive system and are very heavy. The Ugly is driven by a single propeller.

Table 4.1 Propeller Geometric Data

	Diameter	No. of blades	Efficiency
	(ft)		(Cruise)
Good	8.18	2 x 6	0.86
Bad	7.10	2 x 6	0.81
Ugly	7.10	1 x 6	0.78

The propellers will be of composite construction to save weight, but will be metallized on the shanks where the hot engine exhaust impinges on them. The propellers for the Bad and Ugly are common, though this causes a 6% loss in efficiency for both aircraft.

The design and location of the exhaust must be placed with the following design criteria in mind:

- 1) The exhaust does not interfere with or add heat to the gearbox
- 2) Provide anti-icing with exhaust
- 3) Exhaust parallel to stream to reduce excess interference drag

Due to the pusher configuration, it is necessary to duct the exhaust around and away from the gearbox.

4.4.2 Engine Removal

The Good and the Bad aircraft each have two engines in the upper portion of the aft fuselage. This portion of the fuselage is common to both aircraft, so the engine removal must be the same for both aircraft. The method used for the Ugly airplane will be similar to that of the other aircraft, but the Ugly airplane has only one engine and a different internal structure. The removal procedure given below is for the Good and Bad airplanes only, and the man hour estimates are conjectural for ideal conditions.

Proced	ure:	Man Hours
1.	Remove inboard flap sections	0.17
2.	Open all access doors to the	
-	upper and lower engine bays	0.08
	- This will require ladders.	
3.	Position the crane around the	
	engine section, secure the crane,	
	and lower the walkways	0.25
	- This will require a tractor.	
4.	Remove all engine/airframe	
	non-structural connections	0.25
5.	Hook the wench hooks to the engine	
	removal lugs and remove wench chain	
	slack	0.10
6.	Unbolt the engine from the airframe	
	and wench out of the fuselage	0.25
7.	Bolt the engine to the crane and	
	secure the wench	0.10
8.	Fold up walkways and remove the	
	crane	
9.	Close and secure access doors	
10.	Replace flaps	0.17

Engine replacement uses the same method, but steps 4-7 are in reverse order and opposite manner.

Time to remove/replace 1 engine: 1.6 Man Hours Time to remove/replace 2 engines: 2.3 Man Hours

The crane used in this method will also work for the Ugly airplane. Figures 4.13 through 4.15 show the engine removal procedure and equipment for the Good and Bad airplanes.

4.5 Weapons Systems

The Good, Bad and Ugly are designed to be very versatile, carrying out several different missions. These are:

- 1) Tank Attack (Good, Bad and Ugly)
- 2) Ground Support/ Attack (Good, Bad and Ugly)
- 3) Helicopter Attack (Good)

The weapon loadings for these missions are shown in Figures 4.16 through 4.18.

All three aircraft incorporate a GAU-13/A 30mm gatling gun. It is a four-barrel light weight derivative of the GAU-8/A used on the A-10. It can fire either Armor Piercing Incendiary (API) or High Explosive Incendiary (HEI). This cannon offers several advantages:

1) The time of flight to a target at 4,000 ft is 30% less than that of a 20mm round, and the projectile drops only 10 ft in the process.

Figure 4.14 Engine access panels for the Good and Bad airplanes.

Figure 4.15 Engine maintenance crane for the Good, Bad, and Ugly airplanes.

BUTTOCK LINE, B.L. ~ INCHES 500 300 200 100 400 WATER LINE, W.L. - INCHES 300 GOOD AIRPLANE 200 100 NOTE: The wing shown is the Concept 3 wing. MISSION 1: TANK ATTACK 88 MISSION 2: HELICOPTER ATTACK 器 品 2360 lbs. MISSION 3: GROUND SUPPORT/ATTACK 382 lbs. SUU-30B/B CLUSTER BOMB AIM-9M SIDEWINDER 500 lbs. 95 lbs. AGM-114A HELLFIRE

Figure 4.16 Weapon Loading Scenarios for the Good Aircraft.

476 lbs.

Mk.20 ROCKEYE BOMB

2.75in. FFAR Unguided Rocket Launcher

415 lbs.

Figure 4.17 Weapon Loading Scenarios for the Bad Aircraft

Figure 4.18 Weapon Loading Scenarios for the Ugly Aircraft

Figure 4.19 Main Gear Installation General Arrangement (Good Aircraft Shown)

- 2) The ammunition it uses is linkless, preventing jams and reducing the amount of unnecessary weight the airplane must carry.
- 3) Its accuracy is comparable to the GAU-8/A while serviceability is improved.

The weapons systems are described in greater detail in References 3 and 7.

4.6 Landing Gear

A high degree of commonality has been incorporated into the landing gear for the Good, Bad and Ugly. A detailed discussion of the landing gear design is presented in Reference 7.

A tricycle type landing gear is employed for each airplane. The nose gear is offset from the centerline to allow room for the cannon. It retracts directly aft in all three aircraft, as shown in Figure 4.7. The main gear retract aft beside the booms, as shown in Figure 4.19. Two tires per strut are used in the Good and Bad main gear and a single tire on the Ugly. To avoid using a large fairing to cover the main gear, the tires are arranged in tandem. Due to the large difference in take-off weight and field requirements, the Good aircraft uses different main gear tires than the Bad and Ugly.

The commonality features of the landing gear are:

- * The nose gear assembly and tire
- * The main landing gear attachment
- * The two main gear wheel bogies for the Good and Bad
- * Struts and side braces
- * Common retraction actuators/drag braces

A summary of the landing gear details is given in Table 4.2.

Table 4.2 Summary of Landing Gear Details

	Good	Bad	Ugly
TIP-OVER CRITERIA			
Longitudinal (deg)	21.8	7.2	14.8
Lateral (deg) right left		45.7 39.4	49.5 43.7
TIRES			
	1 5,000 lbs	29.1" x 11" 1 5,000 lbs 2,220 lbs	1 5,000 lbs
Main Tire size Quantity Load capability Actual load	34" x 12" 2 10,400 lbs 9,110 lbs	29.1" x 11" 2 5,000 lbs 5,270 lbs	29.1" x 11" 1 5,000 lbs 2,830 lbs
SHOCK ABSORBERS			
Nose Piston diameter Piston length Static pressure	6 in.	3 in. 6 in. 410 psi	3 in. 6 in. 325 psi
Main Piston diameter Piston length Static pressure	11.5 in.	11.5 in.	11.5 in.

5. WEIGHT AND BALANCE

The purpose of this chapter is to discuss the weight, balance and moments of inertia for the Good, Bad and Ugly aircraft. The method used to calculate the weight penalties due to commonality of the three aircraft is also discussed in this chapter. The detailed calculations associated with this chapter are included in Appendix A.

5.1 Weight Penalties due to Commonality

By designing the three CAS aircraft to incorporate a high degree of commonality to reduce the overall life cycle cost, a weight penalty is incurred. This arises from the fact that it is not possible to optimize the structure for lowest weight for all three aircraft.

The following items were considered to be the most influential in determining the weight penalties:

- * Wing components
- * Nose section
- * Landing gear components

1) Wing Components.

The design of the wings for the Good, Bad and Ugly incorporates the wing of the Ugly aircraft as the baseline for all the other wings. To estimate the weight penalties, the following method was used (Reference 9).

- 1. The total aerodynamic bending moment over the wing of the Good was determined from Vorstab, a program developed at KU (Reference 10). The analysis was done for a cambered wing only, at several angles of attack. Thus, effects of the wing-body intersection were not considered.
- 2. The most critical point in the flight envelope was determined, which corresponded to the following flight condition:
 - * Sea level standard conditions, M = 0.227
 - * n = 9.0, angle of attack = 18 degrees
 - * W = 39,725 lbs
- 3. The inertial relief due to the weight of the wing and boom was then determined.
- 4. The total bending moment over the wing of the Good aircraft was then established. It is shown in Figure A.1 in the appendix. The bending moment was divided into three sections, corresponding to the wingspans of the three aircraft.
- 5. With these areas, a ratio of the total area under the bending moment curve for each aircraft to the area corresponding

to the Ugly aircraft was obtained. When multiplied by the weight of the wing of the Ugly, a final wing weight was obtained for the Good and the Ugly. The results are listed in Table 5.1

Table 5.1. Commonality Wing Weight Penalty.

	Good	Bad	Ugly
Wing Weight* (lbs)	4,800	2,225	864
Current Wing Weight (lbs)	5,414	2,278	864
Penalty (lbs)	614	53	0

^{*} Weight estimated in Reference 7.

2) Nose Section

To estimate the weight penalty due to the common nose section for the three aircraft, the following method was used:

- 1. The weights of the fuselages without the nose section were determined from the General Dynamics and USAF method of Reference 11. The two weights that were obtained, were then averaged for each aircraft.
- 2. These weight were then subtracted from the actual fuselage weights obtained from Reference 7 giving an approximate weight for the nose cones. A 10% weight reduction was factored into the nose cone weights to account for the use of advanced materials in this structure.
- 3. Since the nose cone for the Good is common to all three, this weight was added to the weights of the fuselages without the nose cones obtained in Step 1, resulting in the new fuselage weights.

The results are given in Table 5.2.

Table 5.2. Fuselage Weight Penalty due to the Common Nose Section

	Good	Bad	Ugly
Fuselage Weight* (lbs)	2,546	1,407	801
Current Fuselage Wt. (1bs)	2,546	1,564	1,143
Penalty (lbs)	0	157	342

^{*}Obtained from Reference 7.

3) Landing Gear

The weight penalties incurred by having a common landing gear were obtained from Reference 7, Chapter 10, and are given in Table 5.3.

Table 5.3. Weight Penalties due to Commonality in Landing Gear

With Commonality	Good	Bad	Ugly
Main Gear (lbs)	939	793	705
Nose Gear (lbs)	235	235	235
No Commonality			
Main Gear (lbs)	939	500	320
Nose Gear (lbs)	235	200	80
Penalty (M.G./N.G.) (lbs) 385/155	0/0	293/35	

Table 5.4 summarizes the overall weight penalties associated with the various components that have commonality.

Table 5.4. Weight Penalties due to Commonality

Component	Good	Bad	Ugly
Wing	614	53	0
Fuselage	0	157	342
Landing Gear	0	328	540
Horizontal Tail*	0	80	98
Vertical Tail*	0	34	70
TOTAL	614	652	1,050

^{*}Obtained from Reference 7.

5.2 Balance

The methods of Reference 12 were used in developing the weight and balance statements for the three aircraft. The labeling method for the stores is that Store #1 corresponds to the innermost store. To obtain the balance statement as shown in Tables 5.5-5.7, several factors had to be taken into consideration:

- A) Component center of gravity locations (Figs. 5.1-5.3)
- B) C.G. travel
- C) Static margin at the aft C.G.

The C.G. excursion diagrams shown in Figures 5.4-5.6 were used to determine the aft C.G. locations as well as the overall C.G. travel for the three aircraft. The C.G. travels were:

Good	18 in	12.7% MGC
Bad	18 in	15.4% MGC
Ugly	11 in	11.6% MGC

Table 5.5 Component Weight and Balance for the Good Airplane

COMPONENT	Weight	X-CG	Y-CG	Z-CG
	(1bs)	(in)	(in)	<u>(in)</u>
Wing				
Section 1	432	436	-336	86
Section 2	707	418	-174	86
Section 3	3,136	406	0	86
Section 4	707	418	174	86
Section 5	432	436	336	86
Horizontal Tail	416	782	0	210
Vertical Tail	286	767	0	155
Boom	244	500	0	86
Fuselage	2,546	278	0	95
Nacelle	200	460	0	95
Landing Gear - Nose	235	159	3	40
- Main	939	430	0	40
STRUCTURE TOTAL	10,280	410	0	90
Left Engine	1,250	467	-24	100
Right Engine	1,250	467	24	100
Gearbox	1,500	537	0	115
Air Induction	700	412	ŏ	115
Propeller	600	582	ŏ	115
Fuel System	564	429	Ö	86
Fuel Dump	26	469	ŏ	86
Engine Starting System	46	457	ŏ	100
Engine Controls	92	457	Ŏ	100
Propeller Controls	287	582	Ŏ	115
Oil System	175	467	0	100
OH System	175	707	U	100
POWERPLANT TOTAL	6,490	489	0	106
Flight Controls	816	419	0	95
Hydraulic and Pneumatic	324	380	Ö	90
Instrumentation	461	114	Ö	100
Electrical System	505	380	Ö	100
A/C, Pressurization	161	380	Ö	95
Oxygen System	Ö	200	Ö	95
Furnishings	165	160	Ö	105
Auxiliary Gear	203	360	Ŏ	100
Paint	121	360	Ŏ	100
30 mm Gatling Gun	1,200	195	Ö	73
FIXED EQUIPMENT	3,956	290	0	90
THE LEGIT HERT	- 0,,,,,,	<u> </u>		

Table 5.5 cont.

EMPTY WEIGHT TOTALS	20,726	412	0	95
Trapped Fuel and Oil	198	421	0	86
Crew	225	146	0	115
OPERATING EMPTY TOTAL	21,149	409	0	95
Fuel	10,200	414	0	86
Ammunition	936	216	0	105
Stores #1	3,186	358	0	45
Stores #2	3,042	374	0	45
Stores #3	830	390	0	45
Stores #4	382	436	0	45
TAKE-OFF WEIGHT	39,725	399	0	84

Table 5.6 Component Weight and Balance for the Bad Airplane

COMPONENT	Weight (1bs)	X-CG (in)	Y-CG (in)	Z-CG (in
Wing				
Section 1	432	436	-336	86
Section 2	707	418	-174	86
Section 4	707	418	174 •	86
Section 5	432	436	336	86
Horizontal Tail	416	782	0	210
Vertical Tail	286	767	0	155
Boom	244	500	0	86
Fuselage	1,564	278	0	95
Nacelle	200	305	0	95
Landing Gear - Nose	200	209	3	40
- Main	500	430	0	40
STRUCTURE TOTAL	5,688	420	0	96
Loft Engine	600	462	-24	100
Left Engine	600	462	-2 1 24	100
Right Engine	600	522	0	115
Gearbox				115
Air Induction	896	435	0	
Propeller	430	552	0	115
Fuel System	361	401	0	86
Fuel Dump	20	411	0	86
Engine Starting System	16	442	0	100
Engine Controls	82	442	0	100
Propeller Controls	45	550	0	115
0il System	84	462	0	100
POWERPLANT TOTAL	3,734	470	0	106
		700		0.5
Flight Controls	551	390	0	95
Hydraulic and Pneumatic	173	380	0	90
Instrumentation	289	164	0	100
Electrical System	376	380	0	100
A/C, Pressurization	130	380	0	95
Oxygen System	0	225	0	95
Furnishings	130	225	0	105
Auxiliary Gear	121	380	0	100
Paint	65	380	0	100
30 mm Gatling Gun	1,200	245	0	73
FIXED EQUIPMENT	3,035	301	0	88
FINED ENOIT FEMI	0,000	301	<u> </u>	
EMPTY WEIGHT TOTALS	12,457	406	0	97

Table 5.6 cont.

Trapped Fuel and Oil Crew	109 225	390 196	0 0	86 115
OPERATING EMPTY TOTAL	12,791	402	0	97
Fuel	5,030	395	0	86
Ammunition	608	266	0	105
Stores #1	3,042	338	0	45
Stores #2	436	364	0	45
Stores #3	382	406	0	45
TAKE-OFF WEIGHT	22,289	387	0	86

Table 5.7 Component Weight and Balance for the Ugly Airplane

COMPONENT	Weight (lbs)	X-CG (in)	Y-CG (in)	Z-03 (in)
Wing	(105)	(111)	(111)	(117
Wing Section 1	432	381	-336	86
Section 5	432	381	336	86
Horizontal Tail	286	639	0	210
Yertical Tail	286	620	Ö	155
Boom	166	480	Ö	86
Fuselage	1,143	277	Ŏ	95
Nacelle	75	408	Ö	107
Landing Gear - Nose	80	224	3	40
- Main	320	415	ő	40
- 1 (0)(1	320	110	Ū	
STRUCTURE TOTAL	3,220	393	0	101
Engine	500	430	-24	107
Gearbox	300	482	0	112
Air Induction	252	408	Ŏ	112
Propeller	300	501	Ŏ	112
Fuel System	137	376	Ŏ	86
Fuel Dump	11	401	Ö	86
Engine Starting System	4	420	ŏ	107
•	48	420	ŏ	107
Engine Controls	28	501	ŏ	112
Propeller Controls Oil System	35	430	ŏ	100
On System				
POWERPLANT TOTAL	1,615	446	0	108
Flight Controls	357	386	0	95
Hydraulic and Pneumatic	86	385	0	90
Instrumentation	178	179	0	100
Electrical System	254	385	0	100
A/C, Pressurization	111	385	0	95
Oxygen System	0	272	0	95
Furnishings	116	230	0	105
Auxiliary Gear	68	385	0	100
Paint	32	390	0	100
30 mm Gatling Gun	1,200	260	0	73
FIXED EQUIPMENT	2,402	300	0	85
EMPTY WEIGHT TOTALS	7,237	374	0	97
CHELL MEIONI TOTALS	1,291	<u> </u>		
Trapped Fuel and Oil	55	382	0	86
Crew	225	211	ŏ	115
O1 014	220	- ' '	•	•

Table 5.7 cont.

OPERATING EMPTY TOTAL	7,517	369	0	98
Fuel	1,750	376	0	86
Ammunition	608	281	0	105
Stores #1	1,060	338	0	45
TAKE-OFF WEIGHT	10,935	362	0	91

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.1 Component C.G. Locations for the Good Aircraft

Figure 5.2 Component C.G. Locations for the Bad Aircraft

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.3 Component C.G. Locations for the Ugly Aircraft

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.4 C.G. Excursion Diagram for the Good Airplane

Figure 5.5 C.G. Excursion Diagram for the Bad Airplane

Figure 5.6 C.G. Excursion Diagram for the Ugly Airplane

These figures are comparable to the accepted range of C.G. travel indicated in Reference 12, which are 15 inches or 20% of MGC.

5.3 Moment of Inertia

The moment of inertia values for the three aircraft are shown in Table 5.5. These values are compared to typical moment of inertia trends for various aircraft in Figures 5.7-5.9.

Table 5.5 Moments of Inertia for the Good, Bad and Ugly

Good Oper. Weight Empty Take-Off Weight	1xx 38,883 42,279	Iyy 80,854 94,773	Izz 113,300 102,181	Ixz 6,420 7,806
Bad Oper. Weight Empty Take-Off Weight	34,438 36,310	56,030 62,760	85,182 82,379	6,711 8,170
Ugly Oper. Weight Empty Take-Off Weight	23,688 24,455	24,260 26,324	44,419 42,574	3,507 3,646

*Note: All moment of inertia values in slug ft2

Figure 5.7 Rolling Moment of Inertia Trend for Various Airplanes

Copied from Reference 13

Figure 5.8 Pitching Moment of Inertia Trend for Various Airplanes

Copied from Reference 13

Figure 5.9 Yawing Moment of Inertia Trend for Various Airplanes

Copied from Reference 13:

6. PERFORMANCE

The purpose of this chapter is to discuss the performance requirements of the Good, Bad and Ugly aircraft and report if these requirements are met. The requirements are:

* Maximum speed

* Combat Ceiling

* Combat radius

* Maximum load factor

* Endurance

* Military climb requirements

* Take-off/landing groundruns

The detailed calculations pertinent to this chapter are included in Appendix B.

6.1 Maximum Speed

The mission specifications for the three aircraft were as follows:

Good:

350 kts, SLS, fully loaded

Bad: Ugly: 350 kts, SLS, clean 350 kts, SLS, clean

The maximum speeds for the three aircraft were determined from the performance diagrams of each aircraft (Figures 6.1-6.3) and are listed in Table 6.1.

6.2 Combat Ceiling

The mission specifications state that the ceiling requirements for the Good, Bad and Ugly are:

Good:

15,000 ft

Bad:

no requirement

Ugly:

no requirement

For military aircraft, the combat ceiling is defined as the altitude where the rate of climb is 500 fpm at maximum power. The input data for the calculations are:

- * Aircraft weight
- * Propeller efficiency of 0.82
- * Wing loading
- * Air density ratio

The results are listed in Table 6.1.

6.3 Combat Radius

The combat radius determined in the mission specifications for each of the three aircraft are:

Good:

400 nm

Bad: 120 nm Ugly: 100 nm

The Breguet range equation was applied for each segment of the mission. The individual segments were then added up to obtain an overall combat radius. The input data for each segment of the mission for the range equation are:

- * Propeller efficiency
- * Specific fuel consumption
- * Lift-to-drag ratio
- * Ratio of initial to final weights

6.4 Maneuvering Load Factor

The maneuvering requirements listed in the mission specification are:

Good: 5 g's sustained, 150 kts SLS, fully loaded Bad: 5 g's sustained, 125 kts SLS, fully loaded Ugly: 5 g's sustained, 125 kts SLS, fully loaded

The method listed in Reference 14, Chapter 5 was used to determine the maneuvering load factors for the aircraft. The input data was:

- * Weight, wing area, aspect ratio
- * Dynamic pressure
- * Maximum trimmed lift coefficient
- * Drag polars

The results of the calculations are listed in Table 6.1.

6.5 Endurance

The endurance requirements stated in the mission specifications for the Good, Bad and Ugly are:

Good: 1 hour at 5,000 ft Bad: 4 hours at 5,000 ft Ugly: 2 hours at 5,000 ft

The input data are:

- * Propeller efficiency
- * Average specific fuel consumption
- * Beginning and final weights
- * Lift coefficient
- * Drag polars, density and wing area

The results are presented in Table 6.1.

6.6 Military Climb Requirements

The following military climb requirements must be met by the Good, Bad and Ugly aircraft:

- 1) RC > 500 fpm with one engine out, SL 95 F, and maximum take-off weight
- 2) Climb gradient (CGR) > 0.005 at take-off speed, Vto = 1.1 Vstall(to).

The results are listed in Table 6.1.

6.7 Take-off and Landing Groundrun

The Good, Bad and Ugly are required to have the following groundruns:

Good: 2,000 ft, steel planking
Bad: 1,200 ft, soft field
Ugly: 1,000 ft, soft field

The method of Reference 14 was used to estimate the take-off and landing groundruns. The results of the calculations are listed in Table 6.1.

Figure 6.1 Performance Diagram for the Good Airplane

Figure 6.2 Performance Diagram for the Bad Airplane

Figure 6.3 Performance Diagram for the Ugly Airplane

Table 6.1 Peformance Characteristics for the Good, Bad, and Ugly Aircraft

	The	The Good	The Bad	Bad	The	Ugly
Maximum Speed, (kts)	REQUIRED	ACTUAL	REQUIRED	ACTUAL	REQUIRED	ACTUAL
Sea level, fully loaded Stalling Speed, (kts)	350	364	250	299	250	281
Sea level, Wto + stores		100		93.6		86.1
Take-off, Wto + stores		6.96		90.2		77.6
Landing, 90% Wto Maneuvering		88.9		75.5		62.8
150 kts, SL, fully loaded	5 8 8	5.2 8'8	5 8 8	4.99 g's	ۍ م'	5.2 g a
Take-off Groundrun, (ft)	2,000	1,810	1,200		1.000	710
Landing Groundrun, (ft)	2,000	1,130	1,200	816	1.000	560
Endurance @ 5,000 ft, (hrs)	1.0	1.33	4.0	5.16	5.0	3.37
Combat Ceiling, (ft)	15,000	34,300		31,000) !	32.500
Combat Radius, (nm)	400	260	120	168	100	157
Take-off min. RC, OKI, (fpm)	200	726	200	645	200	759
Take-off CGR, (rad)	0.005	0.067	0.005	0.064	0.005	0.108

7. STABILITY AND CONTROL ANALYSIS

The purpose of this chapter is to present the aerodynamic force and moment coefficients, the static (steady state) stability criteria, and the dynamic stability and response characteristics for the good airplane. These stability and control characteristics are analyzed at eight flight conditions.

The airplane is considered to be a rigid body. The computational work was performed on a spreadsheet. The stability and control derivatives are calculated. The numerical values for the calculated derivatives are presented in the Tables of Appendix C. It is advised to read carefully the instructions of Appendix C on 'HOW TO READ THE SPREADSHEET', so that necessary information can be found quickly in the tables.

7.1 Basic Aerodynamic Parameters

The purpose of this section is to discuss the basic aerodynamic parameters of the Good airplane which are needed in the development of aerodynamic forces and moments.

7.1.1 Airfoil Parameters

The airfoil used for the wing is the NACA 642A215 taken from Reference 7. The horizontal and vertical tails use the NACA 64₁-012 airfoil section. The airfoil aerodynamic characteristics are found in Reference 15, p. 217, Tables 8.1b & c. They are presented in Table C.1 of Appendix C.

7.1.2 Planform Parameters

The wing, horizontal tail, and vertical tails geometric characteristics are shown in Chapter 4. The geometric dimensions of the planforms are tabulated in Table C.1 of Appendix C.

7.1.3 Airplane Lift Curve Slope

The subsonic lift curve slopes for the wing, horizontal tail, and vertical tail are calculated and corrected with the aspect ratio correction factor K of Reference 13, Fig. 3.12, p.72. The airplane lift curve slope variation with Mach number is tabulated in Table C.3, Appendix C and is shown in Figure 7.6.

7.1.4 Downwash In The Wing Wake

The subsonic downwash behind the wing, at the horizontal tail, is calculated using the method of Reference 16, Eqn. 8.45, p. 272. It is shown as a function of Mach number in Figure 7.1.

7.1.5 Airplane Aerodynamic Center Location

The airplane aerodynamic center location is calculated using the method of Reference 16, Chapter 8. The fuselage is sectioned into 13 sections as indicated by the method and the fuselage contribution to aerodynamic center shift is computed. Also, one tailboom is sectioned into 13 sections; sections 1 through 5 being zero in delta xi and wf(xi). The tailboom contribution to aerodynamic center shift is computed. The computed contribution for one tailboom is multiplied by 2. This is added to the fuselage contribution.

The numerical values for the fuselage and tailbooms contribution to the aerodynamic center location shift are tabulated in Table C.3 of Appendix C. Figure 7.2 displays the airplane aerodynamic center location shift variation with Mach number. In the same figure, the wing-fuselage aerodynamic center location shift is presented.

7.2 Stability And Control Analysis

The purpose of this Section is to present the stability and control for the Good airplane. This section presents the aerodynamic force and moment coefficients in graph format. The airplane static and dynamic longitudinal stability is presented. A trim diagram was constructed. The airplane dynamic directional stability is presented.

7.2.1 Aerodynamic Force And Moment Coefficients

This sub-section presents the aerodynamic force and moment coefficients for the Good airplane. Reference 16 is used to compute the coefficients. Reference 13, Chapter 4 is used to determine if the computed values fall within the recommended ranges. The values used in the computation of the coefficients, as well as the coefficient values, are tabulated in Tables C.1 through C.3 of Appendix C.

The coefficients are presented in Figures 7.3 through 7.31. Table 7.1 lists the figure numbers, the equation numbers of Reference 16 used in the computation, and the proposed ranges of Reference 13.

TABLE 7.1 Force and Moment Coefficients Figures, Equations and Proposed Ranges.

FIGURE NUMBER	VARIABLE SYMBOL	EQUATION NUMBER (Ref.16)	(Ref.13) RANGE PROPOSED	IS WITHIN RANGE
7.3	C D	(5.2), p.128	(0.01 to 0.15), p.122	YES
7.4	C D a.	(10.18), p.379	(0.00 to 2.00), p.122	YES
7.5	c L	(8.32), p.268	(05 to 0.20), p.128	YES
7.6	C L a.	(8.42), p.272	(1.00 to 8.00), p.128	YES
7.7	C L d e	(10.95), p.438	(0.00 to 0.60), p.129	YES
7.8	C m	(8.76), p.320	(0.15 to15), p.135	YES
7.9	C m a.	(10.19), p.381	(-3.0 to +1.0), p.135	YES
7.10	C m d e	(10.96), p.438	(0.00 to -4.0), p.136	YES
7.11	c 1 _B	(10.33), p.389	(+0.1 to -0.4), p.146	YES
7.12	C l d A	(10.108), p.446	(0.00 to +0.4), p.149	YES
7.13	C 1 d R	(10.124), p.461	(04 to +.04), p.151	YES

TABLE 7.1 Force and Moment Coefficients Figures, Equations and Proposed Ranges, (cont.).

FIGURE NUMBER	VARIABLE SYMBOL	EQUATION NUMBER (Ref.16)	(Ref.13) RANGE PROPOSED	IS WITHIN RANGE
7.14	C y _B	(10.25), p.383	(-0.1 to -2.0), p.151	YES
7.15	C y d R	(10.123), p.461	(0.00 to 0.50), p.155	YES
7.16	C n B	(10.40), p.397	(0.00 to 0.40), p.155	YES
7.17	C n d R	(10.125), p.462	(0.00 to15), p.159	YES
7.18	C n d A	(10.114), p.448	(08 to +.08), p.160	YES
7.19	C D u	(10.10), p.376	(01 to +.30), p.177	YES
7.20	C L u	(10.11), p.376	(20 to +.60), p.177	YES
7.21	C mu u	(10.12), p.377	(40 to +.60), p.181	YES
7.22	C L. a	(10.22), p.381	(-5.0 to 15.0), p.185	YES
7.23	C m a.	(10.24), p.382	(0.00 to -10.), p.185	YES

TABLE 7.1 Force and Moment Coefficients Figures, Equations and Proposed Ranges (cont.).

FIGURE NUMBER	VARIABLE SYMBOL	EQUATION NUMBER (Ref.16)	(Ref.13) RANGE PROPOSED	IS WITHIN RANGE
7.24	C 1 q	(10.69), p.424	(0.00 to +15.), p.189	YES
7.25	C m q	(10.75), p.425	(0.00 to -40.), p.189	YES
7.26	C y p	(10.50), p.417	(30 to +.80), p.194	YES
7.27	c 1 p	(10.51), p.417	(10 to80), p.198	YES
7.28	C n p	(10.61), p.421	(50 to +.10), p.200	YES
7.29	C y	(10.80), p.428	(0.00 to +1.2), p.202	YES
7.30	$\mathtt{c}_{_{1_{_{\mathbf{r}}}}}$	(10.81), p.428	(0.00 to +.60), p.206	YES
7.31	C n	(10.86), p.432	(0.00 to -1.0), p.206	YES

All force and moment coefficients calculated and presented in Figs. 7.3-7.31 are within Reference 13 proposed ranges. All computed force and moment coefficients numerical values can be seen in Table C.3 of Appendix C.

7.2.2 Static and Dynamic Longitudinal Stability

This sub-section presents the static and dynamic longitudinal stability. It is demonstrated that the Good aircraft is longitudinally stable (statically and dynamically), and that it complies to MIL-F-8785C LEVEL 1 longitudinal flying qualities.

7.2.2.1 Static Longitudinal Stability

Reference 12, Section 11.1, p.259 is used to prepare the X-plot of Figure 7.32. There are six curves for the rate at which

the aerodynamic center moves aft or forward with variation of horizontal tail area and Mach number. Reference 12, Eqn. 11.1, p.261 is used to generate the six curves. Two additional curves represent the rate at which the center of gravity (most aft and most forward) move aft or forward as a function of tail area. From Figure 7.32 it can be seen that the Good airplane has an adequate amount static margin with its horizontal tail area of 160 square feet.

7.2.2.2 Dynamic Longitudinal Stability

Using the force and moment coefficients calculated in Section 7.2.1, the longitudinal dimensional stability derivatives are calculated for the Good airplane. The equations of Reference 13, Table 6.3, p.413 are used for the computation. Appendix C, Tables C.4.1 through C.4.7 tabulate the computed longitudinal dimensional stability derivatives for eight flight conditions. The eight flight conditions are the following:

- 1.) Take-off at sealevel (W = 39,508 lbs, V = 106 kts)
- 2.) Cruise #1 at 5,000 ft (W = 39,508 lbs, V = 250 kts)
- 3.) Loiter at 5,000 ft (W = 39,508 lbs, V = 150 kts)
- 4.) Cruise #2 at 5,000 ft (W = 20,932 lbs, V = 250 kts)
- 5.) Dash-in at 1,000 ft (W = 39,508 lbs, V = 350 kts)
- 6.) Maneuver at 1,000 ft (W = 30,220 lbs, V = 220 kts, n = 5)
- 7.) Dash-out at 1,000 ft (W = 20,932 lbs, V = 350 kts)
- 8.) Landing at sealevel (W = 20,932 lbs, V = 106 kts)

Body fixed moments and products of inertia for the Good aircraft were calculated. The body fixed pitching moment of inertia is required in the computation of some of the longitudinal dimensional stability derivatives. The body fixed rolling, pitching and yawing moments and the products of inertia a gross take-off weight of 39,508 lbs, and empty operating weight of 20,932 lbs are:

The above values are verified with Reference 13, Figs. 2.3-2.5, pp.19-21. Sub-section 7.2.4 discusses inertia transformation from fixed body reference axis system to the stability axes system.

The phugoid and short period modes were analyzed at 8 critical flight conditions. Tables C.4.1 through C.4.7 of Appendix C present the values calculated for the phugoid and short period modes (undamped natural frequencies and damping ratios) for the eight flight conditions. A summary of the phugoid and short period modes is tabulated in Table 7.2. In the same table each flight condition category and parameters are presented.

Table 7.2 Longitudinal Flying Qualities

Variab	ole Unit	s Take-off	Crui	se .	Loiter	Dash-in	Maneuver	Dash-out	Landing
Weight	:: [lbs	39,508	39,508	20,932	39,508	39,508	30,220	20,932	20,932
_	[kts	- •	•	250		350	220	350	106
-	number:	•	0.385	0.385	0.23	0.53	0.33	0.53	0.16
Altitu			5,000		5,000		1,000	1,000	0
	factor:	1	1	1		1	, 5	1	1
I i	[slugs.lbs] 94,773	94,773	80,854	94,773	94,773	87,813	80,854	80,854
CATEGO)RY	C	В	B	B	A	A	Å	- C
Phugoi	id mode da	aping ratio:	Reference	13, Bqn	.(6.113),	p.430; Ref	erence 14,	Sec.3.2.1.2,	p.291.
zeta p		-0.336	0.202	0.391	0.088	0.304	1.417	0.576	-0.055
PEABT		t	1	1	1	1	1	i	t
Undamp p.291.		period natur	al frequen	c y : Refer	ence 13,	Bqn.(6.101), p.426;	Reference 14	- , Figs.B1-B3,
n S.P.		e] 1.557	3.595	3.501	2.285	5.251	3.133	5.351	1.563
n/a	[g's/ra	d] 3.565	23.06	43.51	8.370	57.06	20.15	107.7	6.645
TBAB T		1	1	1	1	1	1	1	1
Short	period da	umping ratio:	Reference	13, Bqn	.(6.102),	p.426; Ref	erence 14,	Table IV, p	.292.
zeta S.	.P.	0.827	0.906	1.235	0.819	1.116	1.053	1.451	1.093
TBAB F		1	1	1	1	i	1	2	1

* unstable

LEVEL 1 flying qualities are verified with the requirements of MIL-F-8785C: military specification, flying qualities of piloted airplanes. It is demonstrated that the Good airplane satisfies the MIL-F-8785C Level 1 longitudinal flying quality for all eight flight conditions. The flying qualities are clearly adequate for the mission phases of the eight flight conditions.

7.2.3 The Trim Diagram

The methods of References 16 and 17 are used to construct the trim diagram. The flight conditions for which the trim diagram is constructed are the following:

- 1.) Gross Take-off weight: W = 39,508 lbs
 TO
- 2.) Most aft center of gravity location: $\bar{x} = 0.5567$
- 3.) Most forward center of gravity location: x = 0.4667
- 4.) Elevator deflection angle: d = + 30, 30 degrees e
- 5.) The lift curve slope is at M = 0.35.
- 6.) Planform areas: S = 890 sqf, S = 160 wsqf
- 7.) Aspect ratios: A = 8, A = 5.2
- 8.) $\frac{-}{x} = 0.5117$
- 9.) Sealevel ISA condition.
- 10.) Load factor: n = 1.0

Figure 7.33 presents the trim diagram for the above listed airplane characteristics. On the figure it can be seen that the maximum airplane lift coefficient without elevator deflection is 1.36. The appropriate lift curve slopes with elevator deflections are offseted by 0.2 for 30 degrees of deflection. The pitch break is curved after consideration of the following three criteria:

- 1.) From Reference 17, Figure 5.9, p.266 the Good airplane wing (A=8, leading edge sweep angle = 16 degrees) displays a marginal to unstable pitch break. This is due to the combination of relatively large aspect ratio and leading edge sweep angle.
- 2.) From Reference 17, Figure 5.10, p.267 the horizontal tail of the Good airplane is located in Region 'C'. (The horizontal tail moment arm / m.g.c = 3.318, and the horizontal tail height / m.g.c. = 1). The horizontal tail will enter the wing wake only when the latter is unstable. This is stated in Reference 17, p.265.
- 3.) From Reference 17, Fig.5.11, p.267 there is recovery since $C_{\mathbf{n}}$ remains negative with maximum elevator deflection (+30 degrees).

Taking into account the above three pitch break criteria, the trim diagram is drawn with a starting unstable pitch break that becomes stable shortly after. On Fig.7.33 the most aft and forward center of gravity pitching moments are graphedand it can be seen that 30 degrees of elevator deflection is more than enough to trim the airplane. Actually in the present flight conditions an elevator deflection angle of 10 degrees is adequate.

7.2.4 Dynamic Lateral-Directional Stability

The dynamic lateral-directional stability for the fighter aircraft is analyzed. It is demonstrated that the Good aircraft is dynamically directionally stable. The airplane does comply to MIL-F-8785C LEVEL 1 lateral-directional flying qualities.

Using the force and moment coefficients calculated in Subsection 7.2.1, the lateral-directional dimensional stability derivatives are calculated for the Good airplane. The equations of Reference 13, Table 6.8, p.445 are used for the computation. Tables C.4.1 through C.4.7 Appendix C tabulate the computed lateral-directional dimensional stability derivatives values for the eight flight conditions.

The moments of inertia (body-fixed reference system) are transformed to the stability axes system, using Reference 13, Eqn.(6.140), p.442. The moments of inertia I , I and I are tabulated $$\rm xx$$ zz $$\rm xz$$

in Table C.3 of Appendix C, and the moment of inertia ratios A_1 (I /I) and B_1 (I /I) are presented in Tables C.4.1 xz xx s xz zz s through C.4.7.

Eight flight conditions are analyzed for the Dutch roll mode, maximum roll mode constant, and spiral stability (minimum time to double amplitude). Table 7.3 summarizes the lateral-directional flying qualities.

TABLE 7.3 Lateral-Directional Flying Qualities

Variable Units	Take-off	Cru	ise	Loiter	Dash-in	Maneuver	Dash-out	<u>Lan</u> ding
Weight: [lbs] Speed: [kts] Hach number: Altitude: [ft]	39,508 106 0.16 0	39,508 250 0.385 5,000	250 0.385 5,000	150 0.23 5,000		30,220 220 0.33 1,000		20,932 106 0.16 0
Load factor:	1	1	1	I	l 	5 	1 	1
CATEGORY	C	В	8	В	Å	A	Å	C
Dutch roll damping	ratio: !	Reference	14, Bqn.(3	.27), p.89	; Referen	ce 14, Tabl	e VI, p.297	• `
zeta D	0.222	0.209	0.214	0.208	0.225	0.213	0.230	0.228
TEAET	1	1	1	1	1	2	1	1
Dutch roll undampe	d natural	frequenc	y: Referen	ce 14, Bq	n.(3.26),	p.89; Refer	ence 14, Ta	ble VI, p.297
w [rad/sec]	1.917	4.667	4.365	2.905	6.960	4.244	6.510	1.798
TBABT ~	1	1	1	1	1	1	1	1
Reference 14, Tabl	e VI, p.	297						-
zeta w D n D	0.425	0.977	0.934	0.604	1.565	0.905	1.498	0.411
FEABT	1	1	1	1	1	-	1	1

Table 7.3 Lateral-Directional Flying Qualities

<u>Variable</u>	e Units	Take-off	C	ruise	Loiter	Dash-in	Maneuver	Dash-out	<u>Lan</u> ding	
Weight:	[lbs]	39,508	39,508	20,932	39,508	39,508	30,220	20,932	20,932	
Speed:	[kts]	106	250	250	150	350	220	350	106	
Mach nu	mber:	0.16	0.385	0.385	0.23	0.53	0.33	0.53	0.16	
Altitude	e: [ft]	0	5,000	5,000	5,000	1,000	1,000	1,000	0	
Load fa	ctor:	1	1	1	1	1	5	1	1	
CATEGOR	Y	C	В	В	В	λ	Å	A	C	
Roll mo	de time co	onstant: R	ference	13, Bqn.(6	i.173}, p.	458; Refere	nce 14, Ta	ble VII, p	. 297	
T R	[sec]	0.168	0.064	0.059	0.112	0.034	0.061	0.031	0.156	
FBAKF		1	1	1	1	1	1	1	1	
Spiral : p.297	stabilit y	- time to	double	amplitude:	Reference	13, Bqn.(B)	6}, p.543;	Reference	14, Table	VIII
† 2 s	[sec]	. 4.92	31.28	36.55	12.65	61.99	38.36	67.78	68.27	
LEAST	-	3	1	1	2	1	1	i	1	

Except for the take-off and loiter time flight phases, the aircraft is dynamically stable (lateral-directional). The Good airplane satisfies the requirements of MIL-F-8785C.

The Good airplane does not satisfy level 1 flying qualities at take-off and loiter flight conditions for the time-to-double amplitude in the spiral mode. A method for 'equivalent stability derivative' could be used to determine how much stability augmentation is needed to achieve level 1 handling quality at take-off and loiter in the spiral mode.

The time-to-double the amplitude in the spiral mode can be modified by changing the dimensional stability derivative L .

C B

1 B
has a very powerful effect on the time-to-double the amplitude T .

2s

For the take-off flight condition the time-to-double the amplitude is 4.92 seconds. This is below the level 2 flight category C requirement of Reference 14, Table VII p. 297. It is desired to increase the time-to-double the amplitude to T = 12

sec. This can be done by raising C from its basic value of -0.041/rad to -0.246/rad.

The rolling moment due to sideslip angle can be increased negatively by giving dihedral to the wing or with a stability augmentation system.

7.3 Stability and Control Summary

The aerodynamic forces and moments coefficients for the Good airplane were calculated and the results are presented. values for the coefficients over a Mach number envelope (0 to 0.55) are tabulated in Table C.3 of Appendix C. It is verified that all the calculated coefficients are within the recommended ranges of Reference 13, Chapter 4.

The static (steady state) stability criteria of Reference 13, Chapter 5 are satisfied. The dynamic stability and response characteristics are presented. The good airplane does satisfy the MIL-F-8785C Level I requirements for longitudinal dynamic stability. This is verified for the following eight flight conditions:

- Take-off (at gross take-off weight, 0 ft)
- 2.) Cruise (at gross take-off weight, 5,000 ft)
- 3.) Cruise (at operating empty weight, 5,000 ft)
 4.) Loiter (at gross take-off weight, 5,000 ft)
- 5.) Dash-in (at gross take-off weight, 1,000 ft)
- 6.) Maneuver (at weight between W_{10} & W_{0R} , 1,000 ft, n=5) 7.) Dash-out (at operating empty weight, 1,000 ft)
- 8.) Landing (at operating empty weight, 0 ft)

The trim diagram at gross take-off weight, sealevel and unit load factor was constructed.

It was found that the Good airplane does comply to MIL-F-8785C Level 1 flying qualities in all category flight phases and classes for the dynamic lateral-directional stability (except for take-off and loiter flight conditions).

Figure 7.1 Downwash gradient variation at the horizontal tail with Mach number.

Figure 7.2 Shift in airplane aerodynamic center location with variation of Mach number.

Figure 7.3 Airplane drag coefficient variation with Mach number.

Figure 7.4 Variation of drag coefficient with angle of attack over the Mach number range.

Figure 7.5 Lift coefficient for zero angle of attack, zero elevator angle and zero stabilizer angle, variation with Mach number.

Figure 7.6 Airplane lift curve slope variation with Mach number.

Figure 7.7 Variation of lift coefficient with elevator angle, variation with Mach number.

Figure 7.8 Pitching moment coefficient for zero angle of attack, zero elevator angle and zero stabilizer angle, variation with Mach number.

Figure 7.9 Variation of pitching moment coefficient with angle of attack (i.e. static longitudinal stability), versus Mach number.

Figure 7.10 Variation of pitching moment coefficient with elevator angle (i.e. longitudinal control power), versus Mach number.

Figure 7.11 Variation of rolling moment coefficient with sideslip angle (i.e. dihedral angle), variation with Mach number.

Figure 7.12 Variation of rolling moment coefficient with aileron angle (i.e. lateral control power), variation with Mach number.

Figure 7.13 Variation of rolling moment coefficient with rudder angle, variation with Mach number.

Figure 7.14 Variation of side force coefficient with sideslip angle, variation with Mach number.

Figure 7.15 Variation of side force coefficient with rudder angle, variation with Mach number.

Figure 7.16 Variation of yawing moment coefficient with sideslip angle, variation with Mach number.

Figure 7.17 Variation of yawing moment coefficient with rudder angle, variation with Mach number.

Figure 7.18 Variation of yawing moment coefficient with aileron angle, variation with Mach number.

Figure 7.19 Variation of drag coefficient with speed (i.e. speed damping), variation with Mach number.

Figure 7.20 Variation of lift coefficient with speed, variation with Mach number.

Figure 7.21 Variation of pitching moment coefficient with speed, variation with Mach number.

Figure 7.22 Variation of lift coefficient with rate of change of angle of attack, variation with Mach number.

Figure 7.23 Variation of pitching moment coefficient with rate of change of angle of attack, variation with Mach number.

Figure 7.24 Variation of lift coefficient with pitch rate, variation with Mach number.

Figure 7.25 Variation of pitching moment coefficient with pitch rate, variation with Mach number.

Figure 7.26 Variation of side force coefficient with roll rate, variation with Mach number.

Figure 7.27 Variation of rolling moment coefficient with roll rate, variation with Mach number.

Figure 7.28 Variation of yawing moment coefficient with roll rate, variation with Mach number.

Figure 7.29 Variation of side force coefficient with yaw rate, variation with Mach number.

Figure 7.30 Variation of rolling moment coefficient with yaw rate, variation with Mach number.

Figure 7.31 Variation of yawing moment coefficient with yaw rate, variation with Mach number.

Figure 7.32 Longitudinal X-plot (i.e. static longitudinal stability), airplane aerodynamic center and center of gravity location variation with horizontal tail area.

Figure 7.33 Trim diagram, pitching moment slope for the GOOD airplane, about the center of gravity.

8. STRUCTURAL DESIGN OF THE GOOD, BAD, AND UGLY AIRCRAFT

This chapter presents the preliminary materials selection and the structural design for the Good aircraft. The work presented here was done for the Good airplane only because not enough time was available to work on all three aircraft. Because of the high degree of commonality between the Good, Bad, and Ugly, the structural design for the Bad and Ugly would be similar to what is shown here for the Good.

8.1 Materials Selection

The Good, Bad, and Ugly airplanes would not be built until the mid 1990's, so it is assumed that advanced materials will be more cost-effective then than they are now. Therefore, these aircraft are designed to make extensive use of advanced materials. The materials distribution in the Good, Bad, and Ugly aircraft is as follows:

- * ARALL (Aramid Aluminum Laminate) is an advanced metal material that can be formed into sheets (Reference 18). Its laminate structure prevents its use in milled or extruded structures, but works well in highly stressed skins. Therefore, ARALL is used for most fuselage skins, wing and stabilized torque box skins, and tail boom skins. ARALL is also used in the inlets.
- * 2024 Aluminum is inexpensive. In lightly loaded members, the cost of an advanced material is not likely to justify the small drop in weight. Therefore, 2024 Aluminum is used in lightly loaded internal frames and longerons, wing and empennage leading edge skins and ribs, and for miscellaneous lightly loaded structural components. Using 2024 Aluminum in wing and empennage leading edges has the additional advantage of making them easier to repair after a bird strike than if they had been made of advanced materials.
- Metal Matrix Materials are metals that have non-metallic fibers suspended throughout the material. A metal matrix material is essentially a composite material with a metal used to perform the role normally given to a resin. These materials can be treated like a normal metal, but are much stronger and more heat resistant. One such material is made by DURAL, and is composed of Aluminum with 20% by weight Silicon Dioxide. According to Reference 19, this material is 50% stiffer than the parent aluminum and yields components that are 25% lighter than similar components made with straight aluminum. For the Good, Bad, and Ugly airplanes, this material will be based on 2024 aluminum. Reference 19 also indicates that this material can be made more at a lower cost than other advanced materials because it does not require special manufacturing procedures. Therefore, this material will be used in the wing spars, stringers, and ribs aft of the front spar, and in all heavily loaded fuselage, boom, and empennage structure.

- * Carbon Fiber Composite materials are stiff and have high strength/weight ratios, but they are expensive and difficult to repair. Therefore, nonmetallic composites will be limited to control surfaces, access panels, fairings, and landing gear doors.
- * Aluminum Honeycomb is used in the leading edge snags on the Good airplane, and in the portion of the vertical tail that is immediately below the rudder. This provides crushable material to protect the rudder if the pilot over rotates on take off or landing.
- * Titanium is used in engine support frames, firewalls, and heat shields. Titanium is also used as blast shields around the portion of the wheel well that is close to the tires, and is used for armor plating the cockpit tub.
- * Steel is used for the landing gear struts, braces, and mounts, and for all control cables.
- * Fiberglass is used in wing tips, vertical tail/horizontal tail joint fairings, and for the radome.
- * The tires and hoses are rubber.
- * The canopy is plexiglass.

Figure 8.1 shows the material distribution of the aircraft.

8.2. Structural Layout and Design of the Good, Bad, and Ugly Aircraft

This chapter presents structural layout of the Good, Bad, and Ugly aircraft. The structural design of these aircraft is divided into three parts: 1) the wing, 2) the fuselage, and 3) the booms and empennage.

8.2.1 Structural Design of the Wing

The wing used in the Good, Bad, and Ugly aircraft is designed so that the outer section of the good wing forms the entire Ugly wing, and the outer two sections of the Good wing forms the entire Bad wing. According to Reference 7, the wing uses a NACA 64A-215 airfoil. The initial structural layout for the wings was performed using the methods of Reference 17.

The wing was designed with synergism in mind. The commonality demanded by the three aircraft's use of the wing eliminates much of the wing's potential for synergistic weight savings. The outer ejector rack attachment point for the good aircraft was mounted to the outer joint rib of the Bad boom mount. The need to remove portions of the flaps to allow placement of booms and landing gear, and to allow mounting of wing segments to various aircraft, required the flaps to be

Figure 8.1: Material distribution f aircraft. (Good airpla

or the Good, Bad, and Ugly ne shown.)

Z FOLDOUT FRAME

segmented. This is actually a benefit because high aspect ratio wings are often subject to sufficient flexure to cause flap binding if the flaps are not segmented.

Using Reference 17 as a guide, a rib spacing of 21 inches was estimated. No stringer spacing was estimated, but a spacing of 15 inches is being assumed for the detail drawings. The Good wing has a very small taper ratio. To prevent tip stall, leading edge snags are bolted on to the outer wings section. These snags have their own structure, and are removed when the wing is used on the Bad or Ugly airplanes. Figure 8.2 presents the overall wing structural arrangement.

8.2.2 Fuselage Structural Layout

The fuselage was laid out using the step by step procedure of Reference 17. The ejection seat is mounted to the nose gear, and the gun is suspended from the barrel support ring and from the firing block. The gun is mounted to the ammo drum mount as well as to frames of its own. The engines, gear boxes, and propellers are mounted to thickened frames. The forward engine mount also functions as one of the wing torque box mounts. Titanium firewalls are located between the engines and forward of the front engine mounts. The exhaust ports are surrounded by a titanium heat shield. The ammo drum is mounted to thickened The radar is mounted to a bulkhead forward of the cockpit. The major cutouts in the fuselage are the nose wheel well opening and the cockpit opening. These are strengthened by using stiffened stringers and frames around the wheel well and thickened skin around the canopy.

The forward fuselage was designed to be common between the aircraft from the ammo drum mount forward. The gun fairing is common to all aircraft and the aft fuselage is common on the Good and Bad aircraft from the forward engine mount aft. The lower portion of the first two frames will need to be removed to make room for the torque box on the bad aircraft, however. The aft fuselage of the Ugly airplane must house only one engine, and thus cannot be made common with the other airplanes. In all three airplanes, the entire upper and lower aft fuselage skins are removable for engine access. The main loads of this section are carried by spars in the center of each side of the aft fuselage, and these spars bolt to the top of the wing torque box at several wing spar locations.

Synergism can be improved by moving the forward ammo drum mount two inches aft. This allows the aft ammo drum mount to serve as the forward torque bow mount on the Good aircraft. This was assumed in the drawings. The spacings chosen for the minor frames and longerons are:

- * Frames: 14 inches
- * Longerons: 10 inches
- * Structural depth: 2 inches

Figure 8.2: Wing structural layout for the Good, Bad, and Ugly aircraft.

According to Reference 17, these numbers are typical for fighter aircraft. Figures 8.3, 8.4, and 8.5 present the fuselage structural layouts of the three aircraft.

8.2.3 Boom and Empennage Structural Layout

The boom and empennage structure were laid out in the same manner as the wing and fuselage. The landing gear is attached to the wing and retracts into the boom, so the only major attachment points on the boom are the landing gear actuator/drag brace, the uplock, and the empennage attachment. The structure of the boom is based on four heavy longitudinal members. Two of these members run along the top of the boom. The outboard member follows B.L.120, but the inboard member runs diagonally, allowing for the taper of the boom. The other two members run flush along the sides of the boom at the level of the rear spar of the The frames are spaced 14 inches apart, and are suspended from these 4 beams. Longerons are spaced 10 inches apart. out is provided for main gear retraction, and the frames are shaped to create a P shaped box over the gear. On the Good and Bad aircraft, the empennage bolts on at F.S. 686.8, and on the Ugly aircraft at F.S. 532.8. The Good and Bad aircraft use the same booms, but the Ugly airplane has its own booms.

The empennage has spars at 20 and 69.5% chord, and the bottom of the vertical tail is tailored to allow for 13 degrees of rotation clearance. Fifteen degrees is standard, but this could not be achieved with the existing gear. The main gear should be lengthened if this is a problem. Sufficient room was left in the boom for growth in this case. The top of the rudder was angled to allow for elevator deflection when the rudders are deflected. The four beams used in the booms were extended into the empennage structure, and are attached by bolts to the boom structure. Synergism is obtained in the following areas:

- * The actuator/drag brace is mounted between the boom spine beams.
- * The spars on the vertical and horizontal tails are connected.

The rudder is protected from over rotation by a section of crushable structure below the upper boom beams beneath the rudder. Figures 8.6 and 8.7 show the layout of the boom structure.

8.3 Detailed Structural Layout of the Landing Gear and Boom Attachments, Nose Section, and Horizontal Tail Extensions

This section presents the detailed structural layout of several sections of the aircraft. None of the members shown in this section have been sized, and therefore the thicknesses shown in the drawings are not to scale.

Figure 8.3: Fuselage structural layout for the Good airplane.

Figure 8.4: Fuselage structural layout for the Bad aircraft.

Figure 8.5: Fuselage structural layout for the Ugly aircraft.

Figure 8.6: Boom and empennage structural layout for the Good and Bad aircraft.

1" = 80"

ORIGINAL PAGE IS OF POOR QUALITY

Figure 8.7: Structural layout of the booms of the Ugly airplane.

8.3.1 Boom and Main Gear Attachment

The landing gear is attached to the wing and retracts into the boom, so the only major attachment points on the boom are the landing gear actuator/drag brace, the uplock, and the empennage attachment. The structure of the boom is based on four heavy longitudinal members. Two of these members run along the top of the boom. The outboard member follows B.L.120, but the inboard member runs diagonally, allowing for the taper of the boom. other two members run flush along the sides of the boom at the level of the rear spar of the wing. The frames are suspended from these 4 beams. A cut-out is provided for main gear retraction, and the frames are shaped to create a P shaped box over the gear. This is similar to the arrangement suggested in Reference 7. The suggestion of placing the gear beside the boom could not be followed exactly because that design did not allow for structural depth or landing gear strut thickness.

For the Good and Bad aircraft, the boom was designed to fit the wing of the Good aircraft. This allows one boom to be used for both aircraft. This also requires that adapters be designed that will account for the smaller wing of the Bad aircraft. Figures 8.8a-e show the layout design of boom and main gear attachments for the Good and Bad aircraft.

The boom and main gear attachment design for the Good and Bad aircraft has the following characteristics:

- * The main boom structure attaches to the wing at four points:
 - 1. The side braces bolt onto the rear spar. The bolts for this attachment point pass through the rear spar, the splice plate, the landing gear mounting bracket, and the side These bolts are in shear for brace flange. vertical loads, and in tension for longitudinal loads. Alternate designs should be considered that will place the bolts in shear for all loads. The current design was developed so that there will be no projections aft of the rear spar when the boom is removed. This simplifies the conversion of the wing for use on different aircraft.
 - 2. The outboard upper brace forms a "Y" shape at the aft end of the wing. This piece bolts around the ribs at the wing segment joint located at B.L.120. At the wing segment joint, the standard ribs are replaced by ribs that are extended above the upper surface of the wing, thus providing an attachment surface for the brace. The attachment bolts are in shear for both vertical and longitudinal loads.

Figure 8.8a: Boom and main gear attachment for the Good airplane.(Side view)

Figure 8.8b: Boom and main gear attachment for the Good airplane.(Top view)

Figure 8.8c: Boom and main gear attachment for the Bad airplane.(Side view)

Figure 8.8d: Boom cross sections for the Good and Bad airplanes.

Figure 8.8e: Boom to wing attachment parts break down for the Good and Bad airplanes.

- 3. The inboard upper brace bolts directly onto a wing rib. This allows the same ribs to be used when the boom is attached and when it is not. This simplifies the conversion of the outer two sections of the Good wing for use as the Bad wing. However, the attachment bolts are in tension for vertical loads, so alternate arrangements should be studied.
- * The landing gear mounts are "L" shaped, and bolt onto the rear spar and splice plate. When the outer sections of the Good wing are used on other aircraft, a gap is left behind the rear spar in the area previously occupied by the boom. This gap is filled with small sections of flap, so provision must be made for the attachment of skin to the spar caps. This creates some sharp corners in the landing gear mounting bracket, so alternate designs should be considered. The mounting bolts are in shear.
- * The joint ribs on the Bad aircraft are extended aft and vertically to accept the Booms as for the Good airplane. The other three attachment points require adapter plates between the braces and the rear spar. Like the gear mounts, these adapter plates have many sharp corners, so alternate designs should be considered. These sharp corners exist for the same reasons as the corners on the landing gear mounts.

The booms used on the Ugly airplane are different from those used on the Good and Bad aircraft, so the boom and gear attachments for the Ugly airplane are treated separately. Figures 8.9a-d show the detailed structural layout for the boom and main gear attachments for the Ugly airplane. The boom used for the Ugly airplane is smaller than that used on the Good and Bad aircraft, so many of the components have slightly different shape than those used on the Good and Bad aircraft. Otherwise, the boom and main gear attachments for the Ugly aircraft differ from those of the Good and Bad aircraft in the following ways:

- * Since there is no wing segment joint on the Ugly wing, no splice plates are used.
- * Since the Ugly wing is not segmented, not segment joints exist for the booms to attach to. Thus the "Y" method used for the Good and Bad aircraft cannot be used. Instead, the direct bolt-on method used for the inboard upper braces on the Good aircraft is used for both upper braces on the Ugly airplane.

Figure 8.9a: Boom and main gear attachment for the Ugly airplane.(Side view)

Figure 8.9b: Boom and main gear attachment for the Ugly airplane.(Top view)

Figure 8.9c: Boom cross sections for the Ugly airplane.

Figure 8.9d: Empennage attachment joint.

ORIGINAL PAGE IS OF POOR QUALITY The Ugly boom and main gear attachments suffer from the same problems as those of the Good aircraft. Figure 8.9d also shows the method used to attach the empennage section to the aft end of the boom. The empennage structure bolts directly onto the boom through mounting plates. The mounting bolts are in shear for vertical loads, but are in tension for longitudinal loads. Therefore, alternate designs should be examined.

8.3.2 Horizontal Tail Extension Attachment

Extensions to the horizontal tail are required on the Good and Bad aircraft, but not on the Ugly aircraft. Since the empennage is to be common between all three airplanes, these extensions need to be removable. The elevator hinge line is at the 70% chord point, but it is not known whether or not the elevator needs to extend into the extension. It is assumed for this section that the elevator will extend into the extension along a constant chord line. This simplifies the analysis of the performance of the stabilizer, but it complicates the operation of the extended sections because this creates a swept hinge line. With an unswept hinge, the elevator sections can be connected together. With a swept hinge line on the extension, the extended sections must be actuated by a mechanical linkage that connects them to the permanent elevator section. weight and complexity, but simplifies lofting of the airfoil sections of the extension by placing the hinge line at a common chord point. Both of these options should be examined. Figures 8.10a-c present the detailed structural layout of the horizontal tail extension attachment, including a possible elevator This design allows the extended elevator interconnect link. sections to be actuated without any extra actuators. provision has also been made for a mechanical rudder interconnect This link allows the actuators of either rudder to actuate both rudders in the event of a failure. If an actuator jams, this may prevent either rudder from operating, so this system should be designed so that the working actuator can either overpower the failed actuator, or disengage the link.

As designed, the extensions bolt onto the horizontal stabilizer at the spar caps. The mechanical elevator interconnect link is separated into two parts: One part is permanently attached to the main stabilizer, and the other part is permanently attached to the extension. A collar attached to the main stabilizer system connects the two parts when the extension is attached. When the extension is removed, the extended spar caps (a permanent part of the main stabilizer and vertical tail assembly) are covered with a bullet faring. When the elevator interconnect link is designed, care should be taken that the collar neither pierces the fairings nor falls through the cutout in the end rib at full elevator deflection. Since the linkage is not removed when the extension is removed, the linkage will continue to move as the elevator is deflected.

Figure 8.10a: Stabilizer extension joint top view.

Figure 8.10b: Stabilizer extension joint side view.

Figure 8.10c: Stabilizer extension joint front view.

Figure 8.11a: Nose section side view.

Figure 8.11b: Nose section cross sections.

8.3.3 Nose Section Detailed Structural Layout

The nose section is common to all aircraft and contains the cockpit, gun, radar, and nose gear. The landing gear is installed off center to allow the gun to be mounted on the center line of the airplane. To allow the nose wheel to retract without striking the gun, the gun is installed at an angle that places the firing barrel parallel to the wheel well and on the centerline of the airplane. The firing barrel is thus the closest barrel to the wheel well. The gun is placed so that center of the firing barrel is one inch below the lower surface of the fuselage. The nose gear mounts attach to the bottom of the cockpit and to stiffened fuselage frames. The ejection seat launch rail extends below the cockpit floor and helps support the gun, but this extension may not be necessary since the structure in this area is already very strong. This should be examined. Figures 8.11a-b show the nose section detailed structural layout.

8.4 Wing Component Sizing

The sizing of the wing skins, spars, and ribs has not been The methods of Reference 20 were used to size the completed. wing components for the Good airplane. Since the Good airplane has the highest wing loading of the three aircraft, the sizes determined by this method will be conservative for the other aircraft. An angle of attack of 12 degrees was chosen, and a speed of 558 fps was used. These values were chosen because they represent unstalled wing performance at ultimate load conditions. Since only one flight condition is being checked, a 15% safety factor has been included in all calculations. To accurately size the wing members all corners of the flight envelope should be investigated. For these calculations, the chosen flight condition is between the upper corners of the flight envelope. The following work was performed in the sizing of the wing components:

- * The air loads were converted to normal, axial, bending moment, and torsional moment loads.
- * Zero lift drag was approximated using the methods of Reference 16, and has been included in the loads calculations.
- * The airfoil section was defined and a coordinate system established.
- * The locations of all structural components were established.
- * Wing section moments of inertia were calculated about the assumed wing elastic axis location. These moments of inertia are functions of the sizes of the structural members.

Sizing the members was accomplished be treating each load separately and adding the results. Sizing was at wing stations

360, 240, and 42 because these stations coincide with the wing section joints and the main wing root. These results were linearized to size all of the members of the wing. The completed work can be found in Appendix D.

The structure of the wing consists of ribs, spars, spar caps, skins, and stringers. Stringer areas were allowed to vary to minimize structural weight. Table 8.1 presents a summary of the stringer and spar cap locations for a typical airfoil section.

Table 8.1: Stringer and Spar Cap Locations for a Typical
Airfoil Section (Coordinate system shown below)
Note: The origin is at the elastic axis.

Component	X coordinate	Z coordinate
-	(chord fraction)	(chord fraction)
A	.250	.067
В	.250	051
C	245	.045
D	245	025
a	.150	.082
b	.050	.084
c	050	.078
d	150	.065
е	.150	062
f	.050	063
g	050	056
h	150	044
x 	B e Fr	mz g h D

Table 8.2 presents the loads on the wing for 12 degrees angle of attack, 558 fps, Sea Level standard conditions.

Table 8.2: Air loads on the Wing, a= 12 deg, V = 558 ft/s, Sea Level

Load	Value at:		
	B.L. 360	B.L. 240	B.L. 42
Mx (ft.lb)	160,000	660,000	2,500,329
Mz (ft.lb)	-22,500	-99,000	-380,000
My (ft.1b)	210,000	370,000	390,000
Fz (1b)	32,000	74,000	150,000
Fx (1b)	36,000	86,000	174,000

The structural members of the wing were sized with the methods of Reference 20, with an additional safety factor of 15% to account for other critical flight conditions that were not checked. The work performed to size the structural members may be found in Appendix D. Tables 8.3 - 8.5 show the results of the wing component sizing.

Table 8.3: Spar Cap and Stringer Sizing Results

Item	Cross-	Sectional	Area (sq. in.)	
	Root	B.L.240	B.L.360	B.L.501
A	4.04	1.56	0.46	0.16
В	2.49	0.96	0.29	0.10
C	2.27	0.88	0.25	0.09
D	1.61	0.62	0.19	0.06
a	4.77	1.84	0.53	0.18
b	4.76	1.84	0.53	0.18
С	4.37	1.69	0.49	0.17
d	3.51	1.35	0.40	0.14
е	3.20	1.23	0.23	0.12
f	3.35	1.31	0.37	0.13
g	3.05	1.17	0.35	0.12
h	2.52	.97	0.28	0.10

Material used: 2024 Aluminum + 20% SiO2 extrusion.

Table 8.4: Wing Skin, Spar, and Rib Thicknesses.

Item	Thickness (inches)		
	ROOT	B.L.240	B.L.360
Front Spar	0.940	0.680	0.370
Rear Spar	0.940	0.680	0.370
Top Skin	0.040	0.040	0.030
Bottom Skin	0.040	0.040	0.030
Ribs	0.040	0.040	0.030

Spars and ribs use 2024 Aluminum + 20% SiO2 extrusions and stampings, while skins use ARALL. These materials have similar properties, but ARALL is stiffer.

Table 8.5: Wing Moments of Inertia.

	Sec	ction Moment	of Inertia	(in^4)
	ROOT	B.L.240	B.L.360	B.L.501
Ix	6,300	1,200	230	25
Ιy	1,100	200	39	4
Ιz	69,000	9,200	2,200	200
Ixz	45,000	8,800	1,900	190

8.5 Flutter Analysis of the Wing

Because of the large wing span of the Good aircraft, a flutter analysis was performed. The purpose of the analysis was to determine the flutter speed of the wing. When the wing is moving forward at some constant velocity and it is suddenly disturbed, the subsequent motion may be such that the amplitudes of vibration tend to decrease, stay constant, or increase. The speed at which the amplitudes of vibration tend to remain constant is called the critical flutter speed (Reference 21). At speeds higher than this critical speed, the amplitudes will diverge and may cause the wing to destruct. The critical flutter speed must be at least 1.4 times the maximum dive speed.

The methods and calculations for this analysis are shown in Appendix D. The results of the analysis are that the critical flutter speed is greater than 4935 knots and less than 1817 knots. This result is nonsense, meaning one or more mistakes were made in the analysis. The possible mistakes are:

- 1) The structural damping term was omitted. This term is usually small compared to the others and its effect would be small.
- 2) The system was assumed to be quasi-steady state. That is, the aerodynamic forces were assumed to occur instantaneous with wing deflection. The Kussner-Wagner functions should have been checked.
- 3) The bending and torsional deflection mode shapes were for a uniform, constant cross-section beam. The wing is tapered, thus this assumption is bad.
- 4) Others, that through inexperience, are there but not known.

9. SYSTEMS

The purpose of this chapter is to present the systems layout for the Good, the Bad, and the Ugly aircraft. Because of the high degree of commonality between the three aircraft's systems, ghost views showing the systems are only shown for the Good aircraft. The system components were chosen by first reviewing the mission specifications to determine what the aircraft were to do and second, by observing the systems of aircraft with similar missions.

The flight control system is shown in Section 9.1. The hydraulic and electrical systems are shown in Sections 9.2 and 9.3, respectively. Section 9.4 shows the fuel system. The environmental control and anti-ice system are shown in Section 9.5 and the internal armament and avionics are shown in Section 9.6.

9.1 Flight Control System

The lateral, directional, and longitudinal flight control system layouts are shown in Figures 9.1 through 9.3, respectively. The flight control system has double redundant signal paths to hydraulic actuators for the longitudinal, lateral, and directional flight control surfaces. The hydraulic The redundancy in the actuators actuators are single redundant. is obtained by separating the control surfaces. The elevator, rudders, and ailerons are split into two separate surfaces, each This single redundant having its own hydraulic actuator. actuator is then powered by two independent hydraulic systems (see Section 9.2). The idea is that if one surface becomes inactive - i.e. combat damage to the surface, actuator, signal path, or hydraulic line - the other surface would be able to provide adequate control power. Adequate, however, does not mean Level 1 handling quality. It may be the case that losing two of the four rudder surfaces drops the handing qualities to Level 2 or 3. This, however, could be acceptable for a military aircraft that only needs to get back to its base. Another added benefit of this flight control system is that the hydraulic actuator could all be the same size. To do this, the control surfaces must be split such that the aerodynamic loads on each surface are within the same range. This level of detail design was not done for these aircraft. The control surfaces then were split into two sections to illustrate the concept.

The sizing of the actuators could not be done due to the lack of detail design in the following two areas: 1) actuator to surface installation and 2) hinge moment derivative calculations. If more detail design had been done in these two areas, then the actuator piston area, the control surface deflection rate, and the hydraulic fluid flow rate could have been calculated.

Reference 22 outlines six major design problems involved with an irreversible system (of which a fly-by-wire system

Figure 9.1 The Good: Lateral I

Lateral Flight Control System Layout

Rudder Pedals Signal Paths

, FOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

Figure 9.2 The Good: Directional

Flight Control System Layout

Figure 9.3 The Good: Longitud

belongs). They are:

- 1) Complexity
- 2) Reliability
- 3) Redundancy
- 4) Cost
- 5) Accessibility for repairs
- 6) Susceptibility to lightning strike

Reference 22 also points out three major advantages of an irreversible flight control system:

- 1) Flexibility in combining pilot control commands with automatic control commands
- 2) Ability to tailor handling qualities
- 3) Potential weight savings

Another advantage of the fly-by-wire systems for these three aircraft is derived from commonality considerations. Commonality is increased by laying wires in the airframe as opposed to detail designing three separate mechanical systems for the three aircraft.

The flight control system layouts of the Bad and Ugly aircraft are identical to the Good's, the only difference is the amount of actuators required for the lateral control system.

9.2 Hýdraulic System

The hydraulic system for the Good is shown in Figure 9.4. The hydraulic system consists of two independent systems (System A and B) operating at 3,000 psi pressure with a flow rate between 20-50 U.S. gallons/minute. The system pressure value was estimated by observing what is used for similar aircraft (aircraft data from Reference 8). The hydraulic fluid flow rate also had to be estimated this way because of the reasons already discussed in Section 9.1.

Hydraulic power is used for the following:

- * power for the flight control system actuators
- * main and nose gear steering, breaking, and retraction
- * power for the internal gun

Two independent hydraulic systems are used to have redundancy in the flight control system. System A and B both supply power to every control surface actuator. The hydraulic lines were separated as much as possible to avoid loss of both systems due to combat damage in one area of the aircraft.

The Good and Bad use two engine driven hydraulic pumps. The Ugly, because it only has one engine, uses on engine driven pump and one electric driven pump. The only other difference between the aircraft is the hydraulic fluid flow rate. The flow rates are less for the Bad and the Ugly.

Figure 9.4 The Good: Hydra

9.3 Electrical Systems

The electrical system for the Good is shown in Figure 9.5. The electrical system consists of two engine driven generators to derive AC power. The generator power varies between 30-50 KVA depending on the aircraft (the Ugly needing the least and the Good the most power). A detailed power analysis was not done because of lack of information available on the power requirements of the aircraft's electrical system components. However, with more time and research (research such as talking to industry personnel), the analysis could have been done. A transformer/rectifier is used to get DC power for the aircraft systems requiring electrical power. Electrical power is required for the following:

- * Internal and external lights
- * Avionic and cockpit instrumentation
- * Internal gun firing

Backup electrical power is supplied by a ram air turbine (RAT) which, stored in the port boom, drops in the freestream air in the case of main electrical generator failure.

9.4 Fuel System

The fuel system for the Good is shown in Figure 9.6. The fuel is stored in self-sealing, tear resistant, foam protected tanks. As much fuel as possible was placed in the fuselage for combat damage considerations. The fuel system consists of fuel pumps, fuel sumps, and a fuel vent system. The system also allows for single point re-fuelling on the underside of the port wing. The fuel system layout is identical for the Bad and Ugly airplanes except for the amount of fuel required.

The placement of the fuel jettison is pending upon further research. The probe is behind the engine inlets but is forward of the exhaust. The exhaust is on the top of the fuselage while the jettison probe is on the bottom. A problem may still exist, however, with the fuel vapor being carried by the pressure field about the fuselage into the exhaust stream. To properly locate the probe, a three dimensional flow analysis followed by a wind tunnel smoke test should be done.

9.5 Environmental and Anti-Ice System

The environmental control and anti-ice system for the Good airplane is shown in Figure 9.7. The environmental control system consists of air conditioning for the crew station and the avionics bays. The air conditioning is run from freestream air which is routed through a heat exchanger. The anti-ice system is an air heated spray tube system. Hot bleed air from the engines is piped through spray tubes in the leading edges of the wing, empennage, and engine inlets during known or suspected icing conditions.

Figure 9.5 The Good:

FOLDOUT FRAME

Figure 9.8 The Good: Inter

Figure 9.7 The Good: Environ

The air conditioning system is required for all three aircraft. Only the Good aircraft, because of its all weather requirement, needs an anti-ice system.

9.6 Internal Armament and Avionics

The internal armament and avionic system layout for the Good is shown in Figure 9.8. The internal armament consists of the GAU-13/A four barrel Gatling gun, its 1200 round ammunition drum, and the passive ECM (chaff/flare) dispensers. The avionics shown consists of the attack radar, mission computer, and the heads-up display. The remaining avionic components are not shown for the sake of clarity. The remaining avionic components are located in two bays. One is directly above the mission computer behind the cockpit instrument panel. The second bay is directly behind the pilot, between the ejection seat and the ammunition drum.

The internal armament arrangement is the same for the Bad and Ugly airplanes except for the size of the ammunition drum (400 rounds instead of 1200). The avionics layout is the same for each aircraft except that the Ugly does not have an attack radar.

Fuel Vent Starboard Wing Fuel Bays Fuselage Fuel Bay Cockpit Control of Fuel Pump Fuel System -Single Point

FOLDOUT FRAME

Figure 9.6 Th

10. LIFE CYCLE COST

The purpose of this chapter is to present the results of the life cycle costs analysis of the Good, Bad, and Ugly aircraft. The effects of the commonality on the cost of the aircraft is also presented.

The method used to calculate the life cycle costs and the life cycle estimation results are given in Section 10.1. The development, test and evaluation, and acquisition costs are presented in Section 10.1.1. Section 10.1.2 presents the operations and support cost. The effects of commonality on the aircraft costs are shown in Section 10.2.

10.1 Life Cycle Cost Method and Results

The cost estimating method used for the Good, Bad, and Ugly aircraft was taken from Reference 23. This method presents aircraft cost as life cycle cost. The life cycle cost of an aircraft is the total cost required to take the aircraft from its initial conceptual design to retiring it from the fleet. The life cycle cost includes the following phases:

- * Research
- * Development, Test and Evaluation (DT&E)
- * Acquisition (Production)
- * Operations and Support

The research phase involves the basic costs required to develop those technologies that are essential to the success of the aircraft. This phase may include technology demonstrator aircraft an testbeds.

The development, test and evaluation cost is that cost needed for engineering work and aircraft development prior to production of and aircraft. The cost elements within DT&E are:

- * Airframe engineering
- * Development support
- * Flight test aircraft
 - Engine and avionics
 - Manufacturing labor
 - Tooling
 - Quality control
- * Flight test operations
- * Profit

The primary element of acquisition cost is production. Secondary elements of acquisition cost are ground equipment, initial spares, and training aids for the aircraft. The cost elements within acquisition costs are:

* Engine and avionics

- * Manufacturing labor
- * Manufacturing material
- * Airframe engineering (sustaining)
- * Tooling
- * Quality control
- * Profit

Equations (called cost estimating relationships) are given in Reference 23 for each of these elements.

The cost elements within operations and support are the following:

- * Fuel
- * Maintenance
- * Aircrew
- * Other
 - Indirect
 - Spares
 - Depot
 - Miscellaneous

Figures 10.1 through 10.3, respectively, show the life cycle cost estimates of the Good, the Bad, and the Ugly aircraft. Table 10.1 shows the dollar values of the life cycle costs. The life cycle cost is based on a fleet of 100 aircraft with a 20 year operating cost. (The DT&E and production cost is based on the unit cost obtained by producing 500 aircraft and the resulting number was multiplied by 1/5 to get the cost of 100 aircraft).

Table 10.1 Life Cycle Costs of the Good, Bad, and Ugly (millions of 1989 dollars)

Note: Based on fleet size of 100 aircraft, operating for 20 years at 300 flight hours/year.

	Total DT&E	Total Production	Operating
Good	26.2	1,074.2	826.4
Bad	16.5	711.1	622.6
Ugly	8.2	290.3	556.9

Figure 10.1 The Good: Life Cycle Cost

Figure 10.2 The Bad: Life Cycle Cost

Figure 10.3 The Ugly: Life Cycle Cost

10.1.1 Development, Test and Evaluation and Acquisition Costs

There are six variables in the cost estimating method used which have a large effect on the unit cost of the aircraft. These six variables are:

- 1) AMPR Weight
- 2) Quantity of aircraft produced
- 3) Maximum speed at best altitude
- 4) Engine cost estimate
- 5) Avionics cost estimate
- 6) Labor rates
- 1) AMPR Weight The AMPR (Aeronautical Manufacturers Planning Report) weight is defined as the empty weight of the aircraft less 1) wheels, brakes, tires, and tubes, 2) engines, 3) starter, 4) cooling fluid, 5) rubber or nylon fuel cells, 6) instruments, 7) batteries and electrical equipment, 8) electronic and avionic equipment, 9) armament and fire-control system, 10) air conditioning units and fluid, 11) auxiliary power unit, and 12) trapped fuel and oil. The weight and balance statements of Reference 7 were used to calculate the AMPR weight. These calculations are shown in Appendix E and the results are given in Table 10.2.

Table 10.2 Input for the DT&E and Acquisition Costs

	Good	Bad	Ugly
Take-off Weight Empty Weight AMPR Weight AMPR/Empty	39,608 20,609 12,283 0.60		10,663 6,965 3,809 0.55
Engine SHP # of Engines Engine Cost	6000 2 1,800,000	2500 2 800,000	2500 1 800,000
	Good, Bad	, and Ugl	у
Maximum Speed	350 kts		
Production Quantity Production Rate (per month)	Variable Variable		
Flight Test Quantity Flight Test Rate (per month)	3 1		
Labor Rates: Airframe Engineering Tooling Manufacturing	\$ 48.3 per \$ 34.6 per \$ 26.9 per	r hour	
Avionics (cost per system)		\$3,148,34 \$3,148,34 \$948,34	5

- 2) Quantity produced The quantity of aircraft produced is usually dependent upon the fiscal policy and the economic outlook of a country. The results of the unit costs are therefore shown for a range of quantity produced, from 250 to 1000 units.
- 3) Maximum speed The maximum speed at best altitude is 350 kts for each aircraft according to the mission specifications of Reference 7.
- 4) Engine cost Accurate engine cost estimates are crucial to the aircraft unit cost estimate. Reference 24 was used to get the engine cost for the Good aircraft. The Bad and Ugly engine cost were obtained from Reference 25. The data from these references was plotted and is shown in Figures 10.4 and 10.5. The derivations of the engine costs are shown in Appendix E and the results are given in Table 10.2.
- 5) Avionics cost A list of avionic components required for the three aircraft was taken from Reference 7. The cost of these components was first estimated with the help of Reference 26 and 27. The cost estimate was revised using the results of Reference 28. The avionic cost estimation procedure is shown in Appendix E and the results are given in Table 10.2.
- 6) Labor rates The labor rates used in the cost model are airframe engineering, tooling, and manufacturing rates. The labor rates were estimated with the help of Figure 10.6 and Reference 23. The 1974 labor rates were taken from Reference 23 and multiplied by the ratio of 1989 to 1974 prices to get the 1989 labor rates. Figure 10.6 was derived using Reference 29 and 30. The 1989 labor rates are shown in Table 10.2.

The results of the DT&E and Acquisition cost estimation are shown in Table 10.3 through 10.5, respectively, for the Good, Bad, and Ugly. These tables show the results of the spreadsheets used to calculate the costs. The entire spreadsheet for each aircraft is shown in Appendix E along with a sample calculation, given to verify the spreadsheets. The results shown in Tables 10.3 through 10.5 show the unit cost when 500 aircraft are produced. Figure 10.7 through 10.9, respectively, shown the unit cost of the Good, Bad, and Ugly aircraft as a function of the quantity produced. Note: all quantities are produced within five years.

Figure 10.4 Engine Cost as a Function of Engine SHP

Figure 10.5 Engine Cost as a Function of Engine SHP

Table 10.3 DT&E and Acquisition Costs for the Good (Cost in millions of 1989 dollars)

Tota	. 1	DT&F	Co	st.

Airframe Engineering	18.3
Development Support	4.8
Flight Test Aircraft	94.2
Engines & Avionics 24.7	
Manufacturing Labor 29.5	
Material & Equipment 4.0	
Tooling 32.2	
Quality Control 3.8	•
Flight Test Operations	1.7
Subtotal	119.0
Profit (10 percent of Subtotal)	11.9
Total DT&E Cost	130.9

Total Production and Unit Cost

Engine and Avionics	4113.1 401.3 227.9 28.4 59.8 52.2
Subtotal	4882.8
Profit (10 percent of Subtotal)	488.3
Total Production Cost	5371.1

With the RDT&E cost to be spread out over 500.0 aircraft the selling price is increased by 0.3 million per a/c.

The 1989 unit cost (at 500.0 units) is:
5371.1 / 500.0 + 0.3 = 11.00

Table 10.4 DT&E and Acquisition Costs for the Bad (Cost in millions of 1989 dollars)

To	ta	.1	DT	&E	Co	st
----	----	----	----	----	----	----

Airframe Engineering	12.2
Development Support	3.1
Flight Test Aircraft	58.6
Material & Equipment 2.8	
Tooling 21.8	
Quality Control 2.6	
Flight Test Operations	0.9
Subtotal	74.9
Profit (10 percent of Subtotal)	7.5
Total DT&E Cost	82.4

Total Production and Unit Cost

Engine and Avionics	2701.5 275.2 160.4 19.0 40.5 35.8
Subtotal	3232.4
Profit (10 percent of Subtotal)	323.2

With the RDT&E cost to be spread out over 500.0 aircraft the selling price is increased by 0.2 million per a/c.

Total Production Cost 3555.7

The 1989 unit cost (at 500.0 units) is:

3555.7 / 500.0 + 0.2 = 7.28

Table 10.5 DT&E and Acquisition Costs for the Ugly (Cost in millions of 1989 dollars)

Total	DT&E	Cost
-------	------	------

Airframe Engineering	6.1
Development Support	1.4
Flight Test Aircraft	29.3
riight lest Operations	
Subtotal	37.2
Profit (10 percent of Subtotal)	3.7
Total DT&E Cost	40.9

Total Production and Unit Cost

Engine and Avionics	1037.9 144.5 88.1 9.5 20.8 18.8
Subtotal	1319.6
Profit (10 percent of Subtotal)	132.0
Total Production Cost	1451.5

With the RDT&E cost to be spread out over 500.0 aircraft the selling price is increased by 0.1 million per a/c.

The 1989 unit cost (at 500.0 units) is:

1451.5 / 500.0 + 0.1 = 2.98

Figure 10.6 Consumer Price Index (1960 - 1989)

Derived from References 29 and 30

Figure 10.7 The Good: Unit Cost as a Function of Quantity Produced

Figure 10.8 The Bad: Unit Cost as a Function of Quantity Produced

Figure 10.9 The Ugly: Unit Cost as a Function of Quantity Produced

10.1.2 Operations and Support Cost

Reference 23 gives a method for calculating the fuel, maintenance, and aircrew yearly operating costs. The method for calculating the other yearly operating costs was derived using Figure 10.10 (taken from Reference 23). The derivations are shown in Appendix E along with a sample calculation to verify the operations and support spreadsheet. The spreadsheet, Table 10.6, shows the results of the operating and support cost estimation.

Table 10.6 Operations and Support Costs for the Good. Bad. and Ugly Airplanes

***	*
Inpu	t

Fleet	Size = 100			
		Good	Bad	Ugly
Fuel:	Engine BSFC at cruise = Engine SHP at Cruise = Fuel Cost/Gallon = Fuel Density (JP-4) =	0.38 5100 0.85 6.55	2000 0.85	1000 0.85
Crew:	Aircrew Cost/Hour = Crew Flight Hours/Year = Crew Ratio =	26.06 500 1.1		500
Maint.	: Flight Hours/Aircraft = MMH/FH = Maint. Cost/Hour =	300 10 32.06	300 10 32.06	300 10 32.06
Cost E	******** stimation *******			
		Good	Bad	Ugly
(per y	ear per aircraft)			
Fuel Co	ost	75449	29588	14794
Crew C	ost	14333	14333	14333
Mainter	nance Cost	96180	96180	96180
Other (Cost	227245	171203	153125
Cost/Ye	ear/Aircraft	413207	311304	278432
Fleet (Cost/Year	41320724	31130394	27843191

Figure 10.10 Operations Cost for USAF Fighter, Bomber, and Transport Aircraft (Taken from Reference 23)

10.2 Effects of Commonality

The effects of commonality on the cost of the Good, the Bad, and the Ugly were studied for the DT&E and Acquisition cost. The method used was based on determining a common weight among the three aircraft. Appendix E explains the method used.

The results of the commonality study are shown in Figures 10.11 through 10.13. These figures show the non commonality and commonality cost for each aircraft as a function of the quantity produced. Figure 10.14 shows the cost savings for each aircraft also as a function of the quantity produced. The cost savings incurred by having common aircraft were not as favorable as desired. The results, however, may be due to the method used to calculate the effects of commonality. A much more detailed cost analysis should be done before any definite conclusion can be made about the cost savings due to commonality.

Figure 10.11 The Good: Effects of Commonality on Acquisition Costs

Figure 10.12 The Bad: Effects of Commonality on Acquisition Costs

Figure 10.13 The Ugly: Effects of Commonality on Acquisition Costs

Figure 10.14 Comparison of Cost Savings Due to Commonality

11. COST AND PERFORMANCE COMPARISON

The purpose of this chapter is to compare the cost and performance of the Good, Bad and Ugly airplanes to that of other aircraft with similar mission profiles.

11.1 Performance Comparison

The following aircraft were selected to establish a comparison between the Good, Bad and Ugly and aircraft currently in service:

- 1) Fairchild Republic A-10
- 2) FAMA IA 58 Pucara
- 3) Sukhoi Su-25 Frogfoot
- 4) AMX
- 5) Douglas A-1 Skyraider
- 6) Piper PA/48 Enforcer
- 7) McDonnell Douglas AH-64 Apache

The Apache helicopter was included in this list as a point of reference of the capability of helicopters and because its mission profile is similar to that of the Bad airplane. The results are listed in Table 11.1. The armament and payload carrying capability comparison are presented separately in Section 11.1.1. Figures 11.1 through 11.7 show the three-views of the airplanes listed above. Section 11.1.2 discusses the results of the comparison between the Good, Bad and Ugly and other aircraft with similar missions.

11.1.1 Armament Comparison

1) Good

- * One internal GAU-13/A 30mm Gatling Gun
- * Total payload of 10,000 lbs including 1,200 rounds of anti-armor shells, laser and infrared guided weapons, free-fall munitions, and rocket pods.

2) Bad

- * One internal GAU-13/A 30mm Gatling Gun
- * Total payload of 4,100 lbs, including 400 rounds of antiarmor shells, laser and infrared guided weapons, free-fall munitions and rocket pods.

3) Ugly

- * One internal GAU-13/A 30mm Gatling Gun
- * Total payload of 2,000 lbs, including 400 rounds of antiarmor shells, free-fall munitions and rocket pods.

Figure 11.1 Fairchild Republic A-10

Figure 11.2 FAMA IA 58 Pucara

ORIGINAL PAGE IS OF POOR QUALITY

Figure 11.3 Sukhoi Su-25 Frogfoot

Figure 11.4 AMX

Figure 11.5 Piper PA/48 Enforcer

ORIGINAL PAGE IS OF POOR QUALITY

Figure 11.6 Douglas A-1 Skyraider

Figure 11.7 McDonnell Douglas AH-64

ORIGINAL PAGE IS OF POOR QUALITY

4) A-10

- * One GAU-8/A 30mm Gatling Gun
- * Total payload of 14,638 lbs, including 1,174 rounds of ammunition, laser and infrared guided weapons, and free-fall munitions.

5) Pucara

- * Two 20 mm Hispano DCA-804 cannon, with 270 rounds, four 7.62mm Browning M2-30 machine guns with 900 rounds
- * Total external load of 3,307 lbs including rocket pods, bombs, mines and torpedoes.

6) Frogfoot

- * One twin barrel 30 mm gun
- * An estimated total payload of 9,920 lbs of air-to-ground weapons, and two air-to-air self-defense missiles.

7) AMX

- * One M61A1 20 mm cannon with 350 rounds
- * A total external load of 8,377 lbs including free-fall bombs, air-to-ground missiles, and rocket launchers.

8) A-1 Skyraider

- * Four 20 mm cannon in wings with 800 rounds
- * A total external load of 9,000 lbs, including torpedo, bombs and rocket launchers.

9) Piper Enforcer

- * Two GAU 5/A 30 mm gun pods with 350 rds/gun
- * Up to 5,680 lbs of external weapons including free fall munitions and rocket launchers.

10) Apache

- * One M230 Chain 30 mm cannon with 1,200 rounds.
- * A total of 1,700 lb of external stores including rockets and air-to-ground missiles.

11.1.2 Summary of Performance and Payload Comparison

1) Good. Aircraft that have similar missions to the Good are the A-10, the AMX, and the Frogfoot. The Good compares favorably to all, as shown in Table 11.1. Although slower than the Frogfoot

and the AMX, the Good has twice the combat radius of both the A-10 and Frogfoot. Furthermore, it has similar endurance to the A-10 while having half the take-off and landing groundrun. In terms of armament, the Good and A-10 have similar cannons and carry approximately the same amount of ammunition. The cannon on the Frogfoot is believed to be less capable. The A-10 carries 5,000 lbs of payload more than the Good and Frogfoot.

- 2) Bad. The A-1 and Pucara have similar mission profiles to the Bad airplane. The Bad has a 10% higher maximum speed than the Pucara and a 30% higher speed than the A-1. The combat radii for the Bad and Pucara are in the 170-190 nm range while the A-1 has a substantially higher maximum combat radius. The Bad has a slightly longer endurance than the A-1, but requires approximately 12% more runway for take-off and landing than the Pucara. The
- A-1 carries twice the payload of the Bad and the Pucara, though the GAU-13/A cannon is more effective than the cannon on either airplanes.
- 3) Ugly. The Ugly and the Piper Enforcer are very similar in terms of mission profiles. Both have approximately the same maximum speed, though the Enforcer has more than 39% greater range. However, the take-off and landing groundruns for the Ugly are in the range of 40% less. The Enforcer carries over twice as much payload as the Ugly, though the GAU-13/A is considered to be more effective than the GAU-5/A. As a point of comparison, the Apache carries approximately the same payload as the Ugly.

Table 11.1 Performance Comparison between CAS Aircraft

	1	2	3	4	5	6	7	8	9	. 10
Good	20,726	39,725	10,000	364	560	1.3	34,300	1,810	1,130	10.9
Bad	12,791	22,289	4,100	299	168	5.2	31,000	1,120	816	7.1
Ugi y	7,517	10,935	2,000	281	157	3.4	32,500	710	560	2.8
A-10	24,918	50,000	14,638	368	250	1.8	2.0	4,000	2,000	7.5
Pucara	10,022	14,991	3,307	270	189		32,800	985	656	
Frogfoot	20,950	42,330	9,920	530	300					
AMX	14,770	27,558	8,377	550	280		42,600	2,461	2,400	
A-1	10,550	25,000	9,000	216	1,300	4.0	25,000			
Enforcer	7,885	14,000	5,680	300	400		25,000	1,730	1,580	
AH-64	10,760	21,000	1,700	160	260	3.2	21,000	0	0	9.8

Note

- 1) Operational Weight Empty, (lbs)
- 2) Take-off Weight, (1bs)
- 3) Payload Weight, (lbs)
- 4) Maximum Speed, (kts)
- 5) Combat Radius, (nm)

- 6) Endurance, (hrs)
 - 7) Combat Ceiling, (ft)
- 8) Take-off Groundrum, (ft)
- 9) Landing Groundrum, (ft)
- 10) Cost in Millions of Dollars (1989)

11.2 Cost Comparison

The following two aircraft are included in the cost comparison:

- 1) Fairchild Republic A-10
- 2) McDonnell Douglas AH-64 Apache

The cost for these aircraft were found in References 31 and 32, respectively.

Table 11.2 shows the 1989 acquisition cost for the above two aircraft and for the Good, Bad, and Ugly. The Good, Bad, and Ugly costs are based on a unit cost of producing 500 aircraft. The A-10 cost is based on its 1977 acquisition cost corrected to 1989 dollars using the consumer price index. The AH-64 cost is based on the quantity produced as of 1989 (675 units according to Reference 32).

Table 11.2 Cost Comparison for the Good, Bad, and Ugly

<u>Aircraft</u>	Cost millions of 1989 dollars
The Good The Bad	10.9
The Ugly Fairchild A-10	2.8 7.5
Apache AH-64	9.8

From Section 11.1, the following aircraft can be compared to each other on a mission profile basis and thus will be compared to each other from a cost point of view:

- * The Good vs. the A-10
- * The Ugly vs. the AH-64

The Good airplane is 3.4 million dollars more expensive than the A-10. The Ugly and the Apache carry approximately the same payload while the Ugly costs 7 millions dollars less than the Apache.

12 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations of the preliminary design of the family of Close Air Support aircraft are presented in this chapter.

12.1 Conclusions

- 1) A family of three CAS aircraft were taken through preliminary design and at this stage they seem viable.
- 2) Commonality was achieved in the following areas:
 - * Forward fuselage
 - * Propulsion system
- * Wing
- * Weapons system
- * Landing gear * Empennage
- 3) The weights of the aircraft, including penalties due to commonality, were calculated. The aircraft have acceptable center of gravity travels.
- 4) The aircraft meet all the performance requirements and have comparable performance characteristics with other CAS aircraft.
- 5) The handling qualities for the Good aircraft were The Good aircraft is Level 1 except for a calculated. couple of instances. Aerodynamic redesign or stability augmentation could be used to bring the aircraft to Level 1 for all flight conditions.
- 6) A preliminary structural arrangement was laid out. The wing components were sized for the Good aircraft. Advanced materials were used where possible to reduce weight.
- 7) The flight control, hydraulic, electrical, environmental control and anti-ice, and internal weapon systems were arranged in the aircraft. At this point there is not a space conflict among the systems.
- 8) The life cycle cost of the aircraft was estimated for the three aircraft. The cost savings due to commonality were also estimated. The Good, Bad, and Ugly aircraft are affordable, with acquisition costs of \$10.9, \$7.1, and \$2.8 million, respectively.

12.2 Recommendations

- 1) More studies should be performed to predict the success of the Good, Bad, and Ugly aircraft in the modern battlefield.
- 2) The structural components should be sized so that better weight estimates can be obtained. This would also enable better prediction of the weight penalties due to commonality.
- 3) A study needs to be conducted to determine if either aerodynamic redesign or stability augmentation should be used to get the handling qualities to Level 1 in all flight conditions.
- 4) The components of the individual systems need to be sized to ensure that a space conflict does not exist among the systems.
- 5) The flutter analysis needs to be corrected. The wing of the Good aircraft seems that it may be prone to flutter and possibly invalidate the design. The flutter analysis should be given high priority.

REFERENCES

- 1. Tuschhoff, J., et al, "Battle Scenario and Mission Specifications for Three Close Air Support Aircraft," University of Kansas, Department of Aerospace Engineering, October 18, 1988.
- 2. Hicks, R. "The Modern Battlefield for the Mudfighter Project," University of Kansas, Department of Aerospace Engineering, October 18, 1988.
- 3. Cox, B., and Hoyle, M., "Aircraft Armament and Tank Research for the SABA," University of Kansas, Department of Aerospace Engineering, October 31, 1988.
- 4. Witt, L., Kerns, B., and Mills, N., "Structural Material Selection for the SABA Aircraft," University of Kansas, Department of Aerospace Engineering, September 8, 1988.
- 5. Stonefield, P. and Valasek, J., "An Analysis of Aircraft Systems for a Small Agile Battlefield Attack Airplane (S.A.B.A.) as Defined by Regional Climatic and Topographic Conditions," University of Kansas, Department of Aerospace Engineering, September 8, 1988.
- 6. Kerns, B. and Valasek, J., "Instrumentation Design and Analysis for the Advanced Close Air Support Aircraft," University of Kansas, Department of Aerospace Engineering, December 16, 1988.
- 7. Tuschhoff, J., et al, "Initial Design of a Family of Three Close Air Support Aircraft," University of Kansas, Department of Aerospace Engineering, December 21, 1988.
- 8. <u>Jane's All the World's Aircraft</u>, Published annually by MacDonald and Jane's Publishers Limited, Poulton House, London.
- 9. Personal conversation with Dr. Jan Roskam, 2/28/89
- 10. Vorstab User's Manual, University of Kansas
- 11. Roskam, J., <u>Airplane Design Part V: Component Weight</u>
 <u>Estimation</u>, Roskam Aviation and Engineering Corporation,
 Ottawa, Kansas, 1985.
- 12. Roskam, J., <u>Airplane Design Part II: Preliminary Configuration</u>

 <u>Design and Integration of the Propulsion System</u>, Roskam

 Aviation and Engineering Corporation, Ottawa, Kansas, 1985.
- 13. Roskam, Jan., <u>Airplane Flight Dynamics and Automatic Flight Controls</u>, <u>Part I</u>, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1982.

- 14. Abbott, I. H., Von Doenhoff, A. E., "Theory of Wing Sections", Dover Publications, Inc., New York, 1959.
- 15. Roskam, J., <u>Airplane Design Part VI: Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics</u>, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1987.
- 16. Roskam, J., <u>Airplane Design Part II: Preliminary Configuration</u>
 <u>Design and Integration of the Propulsion System</u>, Roskam
 Aviation and Engineering Corporation, Ottawa, Kansas, 1985.
- 17. Roskam, J., Airplane Design Part III: Layout Design of Cockpit, Fuselage, Wing and Empennage: Cutaways and Inboard Profiles, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1986.
- 18. Roskam, J., <u>Airplane Design Part VII: Determination of Stability, Control and Performance Characteristics: FAR and Military Requirements</u>, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1988.
- 19. DeMeis, R., "New Life for Aluminum," <u>Aerospace America</u>, April 1989, pgs 26-29.
- 20. Bruhn, E., Analysis and Design of Flight Vehicle Structures, Tri-State Offset Company, 1973.
- 21. Rosenbaum, Robert, and Scanlan, Robert, Aircraft Vibration and Flutter, Dover Publications, New York, N.Y., 1968.
- 22. Roskam, J., <u>Airplane Design Part IV: Layout Design of Landing Gear and Systems</u>, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1985.
- 23. Nicolai, L.M., <u>Fundamentals of Aircraft Design</u>, METS, Inc., San Jose, CA.
- 24. Personal conversation with Mr. Kieth Neal of Pratt & Whitney, Wichita, KS, 13 April 1989.
- 25. Personal conversation with Mr. Dennis Picker of Pratt & Whitney, Montreal, Canada, 13 April 1989.
- 26. Introduction to 1987 Avionics, <u>Business and Commercial</u>
 <u>Aviation</u>, April, 1987.
- 27. Personal conversation with Bendix/King employee, Olathe, KS, 25 February 1989.
- 28. Personal conversations with company representatives at the Society of Automotive Engineers, Aerospace Division, General Aviation Avionics Conference, 11 April 1989.
- 29. The Bureau of National Affairs, <u>Collective Bargaining</u>, <u>Negotiations and Contracts</u>, Washington, D.C., 1986.

- 30. Standard & Poor's, <u>Statistical Service</u>, Standard & Poor's Corporation, New York, N.Y., January, 1989.
- 31. Stuflesser, G., "The Cheaper Strike Aircraft: A valid concept", Para Bellum, December, 1977.
- 32. McDonnell Douglass Advertisment, <u>Aviation Week & Space Technology</u>, November, 1988.

APPENDIX A

The purpose of this appendix is to present the calculations done to determine the weight and balance for the Good, Bad and Ugly. Calculations of the moments of inertia for the three airplanes are also presented.

Table of Contents

		page
1.	Component Moment of Inertia Calculation	A1
2.	Weight and Balance Statement	A7
3.	Weight Penalty due to Commonality	A10

1

 $1,5 \rightarrow u_9 | y$ $1+2,4+5 \rightarrow Ead$ $1+2+3+4+5 \rightarrow Good$

* I nertic calculation: (About own axis)

Section 0 & 5 : m= 91716/2 = 458.5 lb

$$Ixx = \frac{1}{12} \left(\frac{458.5}{2(32.17)(144)} \right)$$

Ixx: 287.4 slug.ft?

$$T_{yy} = \frac{1}{2} \frac{(458.5)(90^2)}{(12)(52.17)(144)}$$

Iyy = 33.3 slup. ft2

$$I_{35} = \frac{1(4585)(90^2 + 264^2)}{2(12)(32.17)(144)}$$

I37 = 320.8 stug.ft2

$$I_{xx} = \frac{(709.5)[120^{4}]}{12(32.17)(144)} = 183.8 stug.ft^{2}$$

$$I_{yy} = \frac{(709.5)(147^2)}{12(32.2)(144)} = 275.8 elug : ft^2$$

$$I_{33} = \frac{(709.5)(120^2 + 147^2)}{12(32.2)(144)} = 459.6 plug ft^2$$

section 3 m= 2944 lbs/2 = 1472 lb.

Approximated by rectangular prising (constant thickness)

NOTE: All wind inertia calculations are for each section.

$$I_{xx} = \frac{2(1472)(240^{3})}{12'32.2'(44)}$$
 3047 shug ft²

$$I_{yy} = \frac{2(1472)(183.6)^2}{12(32.2)(144)} = 1783 \text{ slug. } ft^2$$

$$I_{33} = \frac{2(1472)(240^2 + 183.6^2)}{12(144)(32.2)}$$
 4830. slug. H^2 .

· ENGINES

$$I_{33} = I_{33} = \frac{(1250)[3(28)^2 + 73^2]}{12(32.2)(144)}$$

$$I_{XX} = \frac{(1250)(28^2)}{2(32.2)(144)} = 105.7 \text{ slup. } H^2$$

. FUSELAGE: M= 2546 lbs

$$I_{33} = I_{33} = \frac{(2546)[3(70)^2 + 520^2]}{(2(32.2)(144))}$$

$$I_{xx} = \frac{(2.546)[570^2]}{2(32.2)(144)} = 1,345 \text{ slug.ft}^2$$

. 160N : M= 1700 Nos

· AMIMO GASE : (WAMMO) ME 936 LLS

$$I_{\chi} = \frac{4}{12} \frac{(936)[3(47^2) + 93^2]}{12(32.2)(144)} = 257.2 \text{ plug. ft}^2$$

$$I_{y} = I_{gz} = \frac{(936)(47^*)^2}{2(322)(144)} = 222.9 shupft^2$$

3

(see "Good" calculation) · WINGS:

$$I_{xx} = \frac{(600)(23^2)}{2(32.2)(144)} = 34.2 \text{ slug ft}^2$$

$$I_{33} = I_{yy} = \frac{(600)[3(23)^2 + 65^2]}{12(32.2)(144)} = 62.7 \text{ stripft}^2$$

$$I_{33} = I_{yy} = \frac{(1407)[3(70)^2 + 440^2]}{12(32.2)(144)}$$

$$I_{xx} = \frac{(234)[3(47)^2 + 93^2]}{12(144)(32.2)}$$

$$I_{yy} = I_{33} = \frac{(234)(47)^2}{2(32.2)(144)} = 55.7 \text{ slup. ft}^2$$

· WINGS: (see "GOOD" calculations)

· ENGINE: M = 500 #

$$Ixx = \frac{(500)(23^2)}{2(32.2)(144)} = 28.5 slug.ft^2$$

$$Iyy = I_{88} = \frac{(500)(3(23)^2 + 65^2)}{12(32.2)(144)} = 52.2 slug·ft^2$$

· FUSELAGE: M= 801 #

$$I_{33} = I_{yy} = \frac{(801)[3(70)^2 + 370^2]}{12(32.2)(144)}$$

$$Ixx = \frac{801(70)^2}{1(322)(144)} = 423.2 slup. ft^2$$

· GUN: (su "Good" airplane calculation

· AMMO CASE: (W/ ammo) m = 608 lbs

$$I_{xx} = (608) \left[3(47)^2 + 93^2 \right]$$

$$\frac{12(144)(32.2)}{12(144)(32.2)}$$

93"_

5

. GOOD AIRPLANE :

a) SIDEWINDERS :

$$I_{35} = I_{yy} = 78.4 \text{ slug. ft}^2$$

 $I_{xx} = \frac{(328)(25)}{55,641} = 0.147 \text{ slug. ft}^2$

b) 19 round FFAR unpuider rocket launcher:

$$I_{33} = I_{yy} = \frac{(830)(3(16)^2 + 65^2)}{55,641}$$

$$I_{33} = I_{yy} = 74.5 \text{ slup. } ft^2$$

$$I_{xx} = \frac{(830)(16^2)}{55,641} = 3.92 \text{ slup. } ft^2$$

c) suu- 30 B/B Clustr Bomb.

$$I_{33} = I_{37} = \underbrace{(3186)[3(18)^{2} + 90^{2}]}_{55, 141}$$

$$I_{33} = I_{37} = 519. \text{ slug. ft}^{2}$$

$$I_{18} = \underbrace{\frac{3186(18)^{2}}{55,641}}_{55,641} = 18.6 \text{ slug. ft}^{2}.$$

d) MK. 20 Lombs:

6

BAD AIRPLANE:

- a) Sidewinders: I 35 = Ijy = 78.4 slug. ft²

 Ixx = 0.147 slug. ft²
- b) 7-round FFAR rocket launcher:

$$\frac{T_{53} = T_{77} = \frac{436 \left(3(10)^2 + 65^2 \right)}{55,641}$$

$$I_{yy} = I_{33} = 35.5 \text{ slug. ft}^2$$

$$I_{xx} = \frac{436(100)}{55,641} = 0.784 \text{ slug. ft}^2$$

c) MK-20 bomb: $I_{33} = I_{33} = 494 \text{ slug. } ft^2$ $I_{xx} = 10.7 \text{ slug. } ft^2$

UGLY AIRPLANE: I33 = Ipg = 173 slug. H2

IXX = 6.16 slug. ft2

* 5	436 418 406	È		(4)	(11,41)	(6,00	(41,000)	1	(0.00	(C. 50 cm (v)	16.4		COMPONENT
2017 2017 2017 2017 2017 2017 2017 2017	436 418 406		È		(II OI)	(7 ti finite)		: :		(7) (A (16)		(2 u finis)	Z.
3,13 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0	4 4 6 6 8 9	-336	98	168,352	37,152	17,727	10,528	9	289	6,	642	3,493	Section 1
2.13 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	406	-174	9	295,526	60,802	26,666	4,621	1,129	184	276	100	5,461	
2.54 2.54 2.54 2.55 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3	(: ;	∍ ;	8	1,273,216	269,692	111,587	9	2,00,5	,047	7,735	4,830	23,615	
2.54 2.54 20 20 20 23 23	D 1	52.5	8 8	076,667	20,00	000,02	179,6	62,	0 0	9,5	960	194.5	
2.54 2.54 20 20 23 86 23 93	2 6	9 0	9 5	125,332	97,132	54 915	076.5	1 96.0	9 -	è =	,	2440	
2.54 20 20 20 20 20 20 20 20 20 20 20 20 20	292	•	155	219,362	44 330	36 320	•	1,483	0	•	•	7 333	
x =	200	0	98	122,000	20,984	13.168	0	390	0	0	0	2.263	
x a	278	0	9	707,788	241,870	42,475	0	4,960	1,345	13,045	13,045	14 501	
×	460	•	35	92,000	19,000	9,135	0	390	0	0	•	1,865	
	527	m c	\$ 6	101,050	9,400	1,282	0	- 2	•	0 0	•	322	Lending Gear -
	00	>	7	403,770	000'/6	K. #	•	976	>	>	>	3,483	
STRUCTURE TOTAL 10,280	410	0	8	4,212,254	926,108	395,149	30,298	20,232	5,335	15,513	20,02	86,085	STRUCTURE TOTAL
1 250	534	7.	601	E91 7E0	126 000	070 030	9	9076	Š			200	
Profit France 1 250	46.7		3 5	581,750	126,000	07000	951	60,4	3 2		7.7	260.71	Cert Englise
	3	, -	3 =	805,500	22,500	94 474	3 =	1,000	3 -	2	2 0	960.01	
Collin	2.4	•	2	288 400	80.500	25,650	· c	107'-	· c	•	•	7,570	-
	582		2	349 200	000 69	43.872	•	1 713		•	-	6	
•	429	0	98	241.956	48.504	22.407	0	900	•	•	· c	4 488	
	69	0	98	12.194	2,236	1,235	0	45	0	0	• •	22.6	
Engine Starting System 45	457	0	8	21,022	4.600	2.074	0	66	0	٥	0	453	
	457	0	<u>8</u>	42,044	9,200	4 - 48	•	199	0	0	0	907	Engine Controls
Propeller Centrels 287	285	•	15	167,034	33,005	20,985	0	618	0	0	0	4,143	
Dil System 175	467	•	8	81,725	17,500	8,239	0	378	0	0	0	1,763	Oil System
POWERPLANT TOTAL 6,490	489	0	901	3,176,575	687,045	339,678	311	15,827	211	345	345	72,949	POWERPLANT TOTAL
		,	ł										1
Fight Controls 816 Mustraulic and Procuration 324	4 E	00	۶ د	341 904	20 120	30 925	0 =	1,530	0 0	00	00	7 005	Flight Centrols Highwalls and Presimetre
	=	. ~	8	52 554	100	1 293		366	• =	•	•	133	
_	380	· c	8	131,900	50,500	15,741	0	0.00	• •	•	. 0	4 139	
£	380	•	95	61,180	15,295	5.019	0	314	0	0	0	1,253	
Oxygen System 0	200	0	35	•	0	0	0	0	0	•	0	0	
Furnishings 165	9	0	20	26,400	17,325	912	0	393	0	0	0	298	Fernishings
	360	-	8	73,080	20,300	5,679	0	438	0	0	0	1,576	Auxiliery Gear
Power Castless Gue 121	360	-	9 %	214 000	12,100	3,385	-	192	o c	- 12	2 -	4 694	Paint 30 mm Cathing Gun
	?	,	2	200,11	90,	200	,	3	•	-	•		
FIXED EQUIPMENT 3,956	290	0	8	1,147,698	355,900	82,904	0	7,028	0	121	121	22,718	FIXED EQUIPMENT
EMPTY WEIGHT TOTALS 20,726	412	٥	95	8,536,527	1,969,053	617,730	30,609	43,087	5,546	15,979	20,544	181,752	EMPTY WEIGHT TOTALS
	•	,	;								,		
Frepped Fuel and Gri 198 Crew 225	2 2 4	00	8 <u>=</u>	83,358 32,850	17,028 25,875	1,035	00	316 642	00	00	00	1,546 815	Trepped Fuel snd Uni Crev
C	90,	ŀ		700			000			,,,,			Track Control
1	Ŷ	7	ç	0.036,030	306, 110,2	070	20,000	140	0,040	5,373	PFC 0.3	2116	OPERALING CITY II
10,200	# ;	0	96	4,222,800	677,200	377,387	0	16,285**	• •	•	****	78,321	[8]
Ammunition 935 Stores #1	458	9 6	₹ 8	202,176	98,280	9,427	0 0	822.2	252	223	223	1,578	Ammunilion Stores # 1
	374	• •	. &	1,137,708	136.890	91.852	• •	1,330	: =	494	494	3	Stores #2
	390	0	£	323,700	37,350	27,252	0	363	4	22	22	3 14	Stores #3
	436	•	£	166,552	17,190	15,676	0	167	•	78	92	1,616	Stores #4
TAKE-OFF WEIGHT 19 725	100	6	84	5 846 753	1 172 216	1 436 080	\$0.609	65 R10	SATE	17 368	21 012	204 201	TARE-DEF WEIGHT
-			-[1	2,346,5	220,055	2000	2122		30	61,736	100-24	INVESTIGATION OF THE PROPERTY
						I WY.2	I WY'2	I WZ	1XX	3	122	13.2	
			5 ≤	TAKE-OFF WEIGHT	: : :	71,572	30,609	5,83	42,279	94,773	113,300	7,806,7	

ORIGINAL PAGE IS OF POOR QUALITY

AE 622 HUHENT DE BAL AIRPLANE	AE 622 INDTENT OF INERTIA CALCULATIONS BAC AIGPLANS	ULATIONS		•	UPDATED	S-Apr-69							
COLIFONENT	Weight (1bs)	×€	ر (ai)	Z (u1)	WX (16 in)	WZ (1) (1)	100 (2, julio) Ostupi (4, 2) (O)	WY7.2 ug ff (2)	WZ 2 (slug ff 2)	51 to 16.5	alyy (sług ft*2)	alzz (slug ff*2)	alxz (slug R*2)
1771.00	•		72.6	ď	130 753	17 16 ,	17 777	10.528	989	a a c	11	161	***
1000	707	2. 4 0. 8	121-	3 %	295,526	60.802	26.556	4,521	1,129	70-	276	460	S 187
Section 4	707	8 -	174	98	295,526	_08.09	26.556	4,521	1,129	184	276	460	5,481
Section 5	432	446	336	8¢	188,352	37,152	17,727	10,528	069	268	33	321	3,493
Hortzontal Tail	917	782	0	210	325,312	87,360	54,915	-	196. s	50	0 (0	14,733
Vertical Tail	286	767	0 (155	236,612	00 00 00 00 00 00 00 00 00 00 00 00 00	36.320		007	50	-	-	7,533
Boom	744	500 845		<u>a</u> u	122,000	# 0.K. 0.7 0.8.8.8.E.1	26.092	•	3.047	743	5 262	5 267	607,7
Macalla	200	302	0	2 6	61,000	19,000	4.016	0	390		í		1,250
Landing Gear - Nose	200	502	м	유	41,800	8,000	1,886	0	69	0	0	0	361
- Main	200	430	0	무	215,000	20,000	19,957	0	173	0	0	0	1,855
STRUCTURE TOTAL	5,683	420	0	96	2,387,022	544,162	245,141	30,298	13,148	1,686	5,385	6,828	54,651
2000	600	46.2	-24	100	277 200	60.000	27.645	75	1,295	34	63	63	5 978
Frah Engine	009	462	24	00	277,200	60,000	27,645	75	1,295	34	63	63	5,978
(earbox	9	522	0	115	313,200	69,000	35,292	0 0	1,713	၁	0	0	7,768
Air Induction	896	435	0 (51.	389,760	103.040	36.599	> c	2,558	00	0	0	799.6
Propeller God Contact	450	252	-	6 4 6	144 761	49,450	12 531		576	• 0		> C	7,687
first Summ	82	4	•	98	8.220	1,720	729	0	32	0	0	0	152
Engine Startling System	9-	442	0	100	7,072	1,600	675	0	32	0	0	0	153
Emplose Controls	82	142	0	100	36,244	8,200	8,458	0	177	0	0	0	782
Propeller Controls		550	o c	1.5	24,750	5,175 8,400	2.938	- 0	123	00	-	0 0	614
	5	70	•	3	200)))	•	
PUWERPLANT TOTAL	3,734	470	0	106	1,754,575	397,631	179,668	149	9,218	6.3	125	125	40,500
Charte Cardents	551	190	0	95	214 890	147		0	1,073	0	0	0	4.403
Hydraulic and Pneumatic	173	380	0	06	65,740	15,570	5,393	0	305	0	0	0	1,2761
Instrumentation	289	164	0	100	47,396	28,900	1.678	0	6.24	_	=	•	1 022
Electrical System	9/6	330 100	0 (9 8	142,830	37,600		0	812	0	0	0	3,061
Oxygen System	<u> </u>	280 225	- -	8. 8	60+ 6+	12,350	4,052	0	253	9	O.	0	1,012
Furnishings	130	225	0	501	29.250	13.650			0 02	0	9	0 (0 ;
Auxiliary Gear	121	380	0	001	45,980	12,100		•	56.3 26.3	0	0	0	700
30 mm Getting Gun	1,200	242 245	00	00 r 22	24,700	6,500	2,026	00	140	0 (2	0	180
FIXED SOUIDPIEMY	2 0 10	100				0	(FC .C.)	•	1,360	-	171	121	4,629
	2,00,0			89	21475	519.99	63.702	٥	5,156	0	121	121	17,610
ELIPTY WEIGHT TOTALS	12,457	406	0	97	5,055,833	1,208,408	188,510	30,447	27,523	1,754	6,132	7,074	112,762
Trapped Fuel and Oil Crev	109 225	330 136	00	86 115	42,510	9,574	3,579	00	174 642	00	00	00	788
CIPE DATINE FRIDTY TOTAL	107 701	.07								•)	•), -
	,,,,,	707			5,142,443	1.243.657	493 955	30,447	28,339	1,754	6,132	7,074	114,644
fuel Anmunition	5,030	395	06	98	1,986,850	432.580	169,414	0	8,031 **	**	***	•	36,851
Stores # 1	3 042	8 E E		5	161,728	63,840	ن ر	0	1,447	64	56	56	3,662
Stores #2	436	364	0	t f	158 704	19 620	12,020	-	1,330	= -	4 4 4 4	494	9,979
Stores #3	362	40¢	0	45	155,092	17,190	13,593	•	167	- 0	92 82	9 8	1,505
TAKE-OFF WEIGHT	22,289	387	0	98	8,633,013	1,913,777	773,739	30,447	39,504	1,830	6,795	7,738	168,181
			•				3				L ZXI		
					6	OPEP WEIGHT EMPTY	4 4	438	56,030	85,182	6,711		
					₹	ויייושוא זון	3		2	610,20) - (o		

Inertie dimensions: (slug ft.2)

3,493 Gearbox
2,483 Afr Induction
3,630 Propeller
955 Fuel System
82 Fuel Dump
39 Engine Starting
465 Engine Controls 643 Hydraulic and I 687 Instrumentatio 2,109 Electrical Syste 876 A/C, Pressuriz 0 0/tygen System 3,053 Section 1 3,053 Section 5 8,277 Horizontal Tail 5,927 Vertical Tail 1,478 Boom 6,487 Fuselage 706 Nacelle 155 Landing Gear -1,146 4,912 30 mm Gatling 30,281 STRUCTURE TO 565 Auxillary Gear 390 Trapped Fuel a 62, 108 OPERATING EM 13,488 FIXED EQUIPIN 60,541 E11PTY WEIGH 3,507 81,658 TAKE-OFF WEI .823 Flight Controls 6,773 POWERPLANT 12,204 Fuel 3,869 Ammunition 3,477 Stores #1 WVY 2 WZ 2 ALEX AND AND ALZ COMPONENT (SING PL'2 (SING PL'2 (SING PL'2) (SING PL'2) (SING PL'2) 604 Furnishings 325 Oil Sustem 4,961 Engine 269 Paint 44,419 00000 321 321 0 0 0 192 0 0 Zéć. 145 173 3,315 149 24,260 26,324 00 2 12 0 0 0 0 0 0 0 0 1 2 33 33 0 0 0 0 2,182 0 0 0 00 2,422 2,740 23,688 24,455 422 173 2 0000000 000000000000 1,209 1,534 2,128 9.0 9:0 lo: $\circ \circ$ 16.7 ŵ **** 690 690 2,723 1,483 1,483 2,227 1,85 1,85 1,85 1,11 150 334 548 0 276 147 2,794 1,447 2 WY'2 21,118 21,118 650't 104.0 88 463 057 21,761 9 10,528 01,528 00,000 00,000 00,000 00,000 00,000 00,000 00,000 20,304 20,304 21,456 0000000000 920 00 000 21.118 2 947.2 (stugiti:2 13,537 13,537 22,203 22,732 82,733 13,527 13,527 13,537 14,537 11,637 11,637 19,957 15,045 9,055 16,255 4,181 382 152 1,517 1,517 2,752 1,231 8,127 3,552 53,407 10,363 26,141 1,325 2,176 1,051 241,532 1,733 118,661 49,206 237,637 115,51 331,444 OPER, WEIGHT EMPTY TAKE-OFF WEIGHT 57,152 37,152 60,060 44,330 14,330 18,236 8,028 3,200 12,800 325,580 53,500 33,600 28,224 53,600 11,782 946 5,136 3,136 3,136 33,915 7,740 17,800 25,400 10,545 12,180 6,800 3,200 87,600 205,180 219,612 4,730 150,500 63,340 47,700 Ξ 735,217 (u) (1) 2% 173,852 997,257 33,110 31,862 31,862 97,790 42,735 164,592 164,592 182,754 177,320 73,680 316,611 30,600 17,920 17,920 215,000 144,600 102,816 150,300 51,512 4,411 1,680 20,160 14,028 15,050 266,869 658,000 170,848 358,280 (Bin) 719,557 26,680 26,180 12,480 312,000 720,639 21,010 47,475 ,775,550 2,707,065 3,962,678 7 (ž.) 86 86 210 210 155 155 95 95 40 40 36 86 86 107 107 100 95 90 100 100 95 86 115 108 ċć 88 20 24 5. 5 85 8 > (e.5 0000 585 585 179 385 585 381 581 639 620 480 277 277 408 415 482 501 576 401 420 420 420 420 420 376 281 338 77.00 446 272 230 3385 390 360 6 369 300 362 **UGLY AIPPLANE** 432 432 286 286 286 1,143 1,143 320 Weight (1bs) 500 300 300 252 300 11 11 48 48 28 35 116 68 32 32 1,615 522 . 750 608 . 060 2,402 7,237 7,517 10,935 Hydraulic and Pneumatic OPERATING ELIPTY TOTAL CHIPTY WEIGHT TOTALS Engine Starting System Landing Gear - Nose - Main POWERPLANT TOTAL A/C, Pressurization frapped Fuel and Oil Propeller Controls 30 mm Gafling Gun TAKE-OFF WEIGHT STRUCTURE TOTAL Electrical System TIXED EQUIPMEN Instrumentation Section 5 Horizontal Tail Engine Controls Flight Controls Dx ugen System ƙazılısıy Gesr Air Induction Section 1 Vertical Tail Fuel System Furnishings Ammunition uel fumo 011 System Stores #1 Propeller Tu selaye Gearbox Nacelle Engine VY1 PO 3000

UP[ATE 5-Apr-89

AE 622 MOMENT OF INERTIA CALCULATIC

1. WING:

The benching moment relief due to the using weight is calculated as follows. The weight distribution across the span is considered to be triangular. All calculations are for the Good wing since it is artical having to support all loads from the other two curplanes.

For n= 7.33; Wo = 418,5#/ft

Www. = 4,800 # (Rpt 1, p. 31)

· Calculating the shear: (area under = load curve; V=- [wdx]

-2,400 #

at A, VA=0,

. calculating the moment:

$$M_{8}-M_{A}^{\circ}=-\frac{1}{3}(\omega_{s})(\chi)$$

1 0 42 -2.46 .105H. eL

SING MALD

and the bending moment diagram is shown in fig. 1. It represents the inertial relief due to the using weight. (for a load factor of 1.0)

2. Boom:

The weight of the boom is considered to act as a point load at 10' from the center-line. Again, the analysis is for the Good wing since it is the most critical:

WBOOM = 244 lb. (Rpt 1, p. 31) = 122(b

· (alculating the shear:

. VA = 0

· (alculating the bending moment:

MA=0, Mmax = 244(10)(7.33) = 1.79 × 104 ft. 16

the bunding-moment diagram is shown in fig. 1. It represents
the binertial relief due to the weight of the boom. Compared
to the inertial relief due to the wing weight, it is almost regligible.
Thus, for simplicity, it is not considered to be significant of not
accounted for.

From fig. 3, the following area ratios were obtained:

So, for the uniphts of the wings:

، دد

$$W_{BAO} = 864 \left(\frac{5z + \frac{2}{3}}{\frac{2}{3}} \right) = \frac{2,758 \text{ lbs}}{1}$$

$$W_{GOOD} = 864 \left(\frac{3. + 3. + 3.}{3.} + \frac{3.}{3.} \right) = \frac{5.217 \text{ L/s.}}{3.}$$

And, the following wing weights were obtained from the weight ; balance section of report 1. They correspond to weights obtained from the equations of Part I, Roskam.

$$W_0 = 864 \text{ lbs}$$
, (Rpt1, p. 33)
 $W_{BAO} = 2225 \text{ lbs}$, (Rpt1, p. 32)

· Thus, the following penalties (weight) are associated with the three aircraft:

- To estimate the weight penalty due to the common nose section for the three airplanes, the following method was used:
 - 1. The weights for the fundages without the more sections was determined from Pt.5, Roskam equations.
 - z. These weights were subtracted from the actual fuseloge weights obtained from Weight and Balance, Report 1, giving the nose come weights.
 - 3. Since the nose cone for the & Good' is common to all three, this weight was added to the weights of the fuselages without nose cones. This gives the new fusciage weight.

1,2) Fusciage weight (w/o nose section) ralculation: (All egins from Roskam) l1 = 24.8 ft * GOOD:

. GD METHOD:

$$W_{f}' = 10.43 (1.25)^{1.42} (7.50)^{0.283} (40.45)^{0.98} \left(\frac{24.8}{5.5}\right)^{0.71}$$

$$W_{f}' = 2.770 \text{ lb} \quad \text{vs} \quad 3.606 \text{ lb} \quad (p.31, Rpt 1)$$

⇒ Nose cone wt: 836 lb

ORIGINAL PAGE IS OF POOR QUALITY · USAF Method:

$$W_{f}' = 200 \left[(364)^{0.286} (2.43)^{0.857} (1.05) (4)^{0.238} \right]^{1.1}$$

$$W_{f}' = 1266 \text{ lb} \quad \text{vs} \quad 2052 \text{ lb} \quad (9.31, 8pt 1)$$

> Mose come urt: 786 lb

-> Average Nou cone wt: 811 ebs and, for 10% wt savings due to advanced materials: = 730 lbs

* BAD: l'= 19.8 ft

· GD Method:

$$W_f' = 10.43(1.25)^{1.42}(6)^{0.283}(21.6)^{0.95}(19.8/5.5)^{0.71}$$
 $W_f' = 1100 \text{ lb} \quad \text{vs.} \quad 1704 \text{ lbs.} \quad (p.32, 17pt)$

> Nose Cone wt: 604 lb

· USAF Method:

$$W_f' = 200 \left[(1.94)^{0.286} (1.98)^{0.857} (1.05) (3.5)^{0.338} \right]^{1,1}$$
 $W_f' = 753 \text{ lb}$ vs. $1422 (p. 32, Rpt 1)$

=> Nose cone art: 669 lb

- Autrage Nose come wt: 637 lbs

-, for 10% wt. savings due to advanced materials: = 573 lbs

* UGLY: lf = 10.75 ft

· GD Method:

$$W_f' = 10.43 (1.25)^{1.42} (6.0)^{0.283} (10.8)^{0.95} (1.95)^{0.71}$$
 $W_f' = 367 \text{ lbs}$ Us. 711 lbs (R+1, R.33)

> Nose Cone W+: 345 lbs.

· USAF Method:

=> Nose come w+; 51816.

- -> Average Nose Cone wt: 432 lbs
- for a 10% wt savings due to advanced materials = 388 lbs
- 3) Since the Good nose section is common, the weight of all three sections is W N.S. = 730 (Ls

So, the following total fusciage sections are:

•		G00D	BAD	UGLY
	WN.S.	730	730	730
•	Wf'	1,816	834	413
total	Wf	2,546	1,564	1,143

(lbs) (Non section)
(lbs) (Fuedage Wo Nose)
(lbs) (total)

Note: Wi is obtained by subtracting the arrage nose cone. weight from the total fusciage weight obtained from Weight & Balance, Rpt 1.

So, in summary:

		<u> </u>	<u> </u>	1
,	G00D	BAD	UGLY	
. Initial Wy estimate	2,546	1407	108	(16s)
- current Wf estimate	2,546	1,564	1,143	(1 6 5)
· Penalty	0	157	342	(165)

· The	following	data	was	obtained	from	Chapter 10,	Report	١.
	' C				1	•		

	GOOD	BAD	UGLY	
Main Gear Wt.	939	793	70s	(165)
Nose Gear Wt.	235	235	235	(lbs)
Penalty: Ma/NG	0/0	²⁹³ / ₃₅	385/185	(lles)

From pt I, Roskam, the following landing year weights were computed.

	G00D	BAD	UGLY	
M.G.	939	500	520	((bs).
N, G	235	200	80	(193).

From these figures, it appears that a raision of the commonating requirements is necessary. The penalty incurred by the Bad & especially the Ugly aircraft are excessive.

$$W_{B} = 0.021(1.07) \left(\frac{400.35}{2+2}\right)^{1/2} (40)^{1.2} = 120 \text{ lbs.}$$

1) Fairchild C-1193: Tailboom ; novelle:

Nacelle group /GW = 0,040

Nacelle ut = 2538

2) A W Angosy:

Tailbooms: 2,360 lbs

Tailboom/4W= 0.0288

 \Rightarrow Assume: $\frac{1}{2}(0.040 + 0.0288) = 0.0344$

- Good: 0.0344 (39,725) = 1,366 lbs

· BAD : 0.0344 (22,289) = 766 Ns

· UGLY; 0.0344(10,935) = .376 lbs. +158 = 432 lbs

Note: 6000 & Bad han common booms.

GOOD, BAD = 1,366 Us.

APPENDIX B

The purpose of this appendix is to present the calculations done to verify the performance of the Good, Bad and Ugly aircraft. The table of contents listed below shows what is included in this appendix.

Table of Contents

		page	
1.	Maneuvering	B1	
2.	Maximum Speed	В3	
3.	Stall Speed	В3	
4.	Take-off Groundrun	В5	
5.	Landing Groundrun	В6	
6.	Endurance	В8	
7.	Climb	В9	
8.	Combat Radius	B10	
9.	Combat Ceiling	B11	

Manuvering:

a) Good: 5 g's sustained, 150 Kts, Si fully loaded.

1. Sustained:

$$W = W_{T0} = 39,725 \text{ lbs}$$

 $S = 890 \text{ ft}^2$
 $T = 8,900 \text{ shp.}$
 $A = 8$
 $e = 0.80$
 $S = 76.3 \text{ psf}$
 $C_{D_0} = 0.0252 \text{ (with starts)}$

Method from PtvII, Chap. 5

$$N_{\text{max}} = \frac{1.482 \, \text{5} \, \text{M}^2 \, \text{CL} \cdot \text{S}}{W} = \frac{1.482 \, (1.0)(0.274)^2 (1.3)(890)}{39,725}$$

$$P_{W_{1Cg}} = \left[C_{Do} + \frac{C_{L_{man}}}{\pi A E} \right] \frac{U_{1}}{550}$$

$$C_{L_{man}} = N \frac{W}{54} = 5.0 \left(\frac{39.725}{36.3.890} \right)$$

$$P/W_{reg} = \left[0.0252 + \frac{2.93^2}{\pi(8)(0.8)} \right] \frac{253}{550} = 0.207$$

- b) Bad: 5 g's sustained, 125 Kts, &L, fully wacted.
 - 1. Sustained.

$$P_{W_{Rg'd}}^{\prime} = \left[\begin{array}{c} 0.028 + \frac{2.54^2}{T(4.2)(0.8)} \right] \frac{253}{550} = 0.292$$

c) Uply: 5g's sustained, 125 Kts, S.L., fully loaded.

1. sustained:

$$W = W_{10} = 10,935 \text{ lb}$$

$$S = 335 \text{ fd}^{2}$$

$$T = 2,000 \text{ shp} \cong 5,213 \text{ lb};$$

$$A = 5.9$$

$$e = 0.80$$

$$8 = 76.3$$

$$C_{00} = 0.0299$$

$$C_{max} = 1.3$$

$$C_{lman} = 5.0 \left(\frac{10,935}{76.3 \cdot 335}\right) = 2.14$$

$$PW_{repid} = \left[0.0299 + \frac{2.14^{2}}{17(5.9)(0.9)}\right] \frac{253}{550}$$

. Machael = 5.2

B2

NATIONAL | MANUSA

2) Maximum Speed: (all obtained from performance diagrams)

Good: 350 Kts, S.L., fully looded;

actual: 364 Kts met ~

Bad: 250 Kts, S.L, fully loaded.

actual: 299 Kts met ~

Ugly: 250 Kts, S.L, fully loaded

actual: 281 Kts met v

(Method assumed valid to within ± 50 np - our to inaccuracy in THPAV. curves. Therefore, power required to run the various systems was not included in the calculations.)

3) Stall Speed

Good .

9-max (clean) = 1.3

PSL = 0002377 slug/513

Gmax (T-0) = 1.4

P(5000) = 0.00 2048 sl/fr3

Gray (Land) = 1.5

p (15,000) = 0,00 149 stup/ft/3

Stall speed:

Vs - \(\frac{2W}{0G} \)

· clean:

5. L. ;

100 Kts

(Ce = 1.3)

fully loaded

5,000 ft: 108 Kts

15,000 ft:

127 Kts

· +- Off

96.9 Kts

(4-1.4)

Land

wy

88.9 Kts

(CL=1.5)

W= 90% WTO

4

und Lancling -4 = 2.2 VV = 90% WA

		Performance Check	4/16/89
B	ad:	Cemax (lean) = 1.3	W170= 27,289 163 \$ = 577 ft2
		Gmax (7-0) = 1.4	
		(Lmax (Lancl) = 1,8	
	· Clean (G=1.3)	S.L: 93.6 Kts	
	fullylocaded	5,000 ft: 100. Kts	
		15,000 ft. 118 Kts	
ua.	· T- 0 -	90.2 KHs	
level	· Landing - (L=1.8 WL = 90% Wr.		
Ugl	<u>'y</u> :	Cmax (clean) = 1.3	Wro = 19, 935 lbs \$ = 335ft ²
		C _{Lmax} (7-0) = 1.6	
	·	(Land) = 2.2	•
	· clean (G=1.3)	S.L: 86.1 Kts	
	fully loaded	5000 ft: 92.7 Kts	
		15,000ft: 108.KHs	
un (T-0	77.6 Kts	

62.8 Kts

3) Groundrun:

Stop =
$$\left[\frac{V_{LOF}^{2}}{29}\right] / \left[\frac{T}{W_{To}} - M'\right]$$
 $V_{LOF} = 1.1 \ V_{S_{TO}}$ for military

 $M' = M_{e} + 0.72 \left(\frac{Co_{o}}{CL_{max}}\right)_{T-o}$
 $T = 5.75 \cdot P_{To} \left(\frac{\sigma ND_{e}^{2}}{P_{To}}\right)^{\frac{1}{3}}$

Soj:

 $V_{LOF} = 1.1 \left(163.6\right) = 180 \text{ ft/s}$
 $M' = 0.02 + 0.72 \left(\frac{0.0252}{1.4}\right) = 0.033$
 $T = 5.75 \cdot 12,000 \left(\frac{1}{179}\right)^{\frac{1}{3}} = 12,236 \text{ shp.}$

$$S_{106} = \left[\frac{180^2}{64.4}\right] / \left[\frac{12,236}{39,325} - 0.033\right]$$

Performance Check

Bad 1,200 ft, soft field.

(All parameters & equations defined above)

$$V_{LOF} = 1.1 (152) = 167.6 \text{ ft/s}$$
 $\mu' = 0.10 + 0.72 \left(\frac{0.0280}{1.4} \right) = 0.114$
 $\overline{T} = 5.75 \cdot 6,210 \left[\frac{1}{99.2} \right]^{1/3} = 9,858 \text{ shp}$
 $STOQ = \left[\frac{167.6^2}{64.4} \right] / \left[\frac{9,858}{22,289} - 0.114 \right]$

Stor = 1,328 ft
9.7% discrepancy. Does not ment

Ugly: 1,000ft, soft Field

All parameters ? equations are described above

$$\mu' = 0.1 + 0.72 \left(\frac{0.0299}{1.6} \right) = 0.114$$

$$\overline{T} = 5.75 \cdot 3,968 \left(\frac{1}{49.6}\right)^{1/3} = 6,210 \text{ shp.}$$

$$S_{TOG} = \left[\frac{144.2^2}{64.4} \right] / \left[\frac{6,210}{10,935} - 0.114 \right]$$

5) Lancling.

Sair =
$$\frac{1}{8} \left[\frac{V_A^2 - V_{TO}^2}{28} + h_L \right]$$

$$V_{TD} = V_A \left[1 - \frac{8^2}{\Delta n} \right]^{1/2}$$
, $\Delta n = 0.10$

$$S_{LG} = \frac{V_{70}}{2a}$$
; $\bar{a} = 0.40 \cdot g = 12.9$

$$V_{TD} = 180 \left[1 - \frac{0.10^{4}}{0.40} \right]^{\frac{1}{2}} = 171 \text{ ft/s}$$

$$S_{LG} = \frac{171^2}{2(17.9)} = 1,132ft$$

Sair =
$$\frac{1}{0.10} \left[\frac{180^2 - 171^2}{64.4} + 50 \right] = 990 \text{ ft}$$

S, = 990 + 1,132 = 2,123 f+

Bad: All parametrs defined prinously.

$$V_{A} = 1.2(127.5) = 153 ft/s$$

$$Sair = \frac{1}{0.10} \left[\frac{153^2 - 145^2}{64.4} + 50 \right] = 870f +$$

Ugly: All parameters defined previously.

$$S_{LG} = \frac{120^2}{2(12.9)} = 562 ft$$

Sair =
$$\frac{1}{0.10} \left[\frac{127^2 - 120^2}{64.4} + 50 \right] = 768 \text{ ft}$$

Good:
$$E = 778 \left(\frac{n_P}{c_F}\right) \sqrt{p} \left(\frac{c_L^{3/2}}{c_D}\right) \left(\frac{1}{W_{end}} - \frac{1}{\sqrt{W_{end}}}\right)$$

$$E = 778 \left(\frac{0.86}{0.40}\right) \sqrt{\frac{0.00204.890}{0.0437}} \left(\frac{0.611^{1.5}}{0.0437}\right) \left(\frac{1}{\sqrt{32,501}} - \frac{1}{\sqrt{34,010}}\right)$$

$$W_{i} = (39,725)(0.856) : 34,010 lb$$

$$W_{e} = (39,725)(0.8202) = 32,581 lbs$$

$$Q = \frac{(33,295)}{61.2.890} = 0.6113$$

$$G = \frac{(19.263)2^{\circ}}{131.577} = 0.509$$

$$E = 778 \left(\frac{0.81}{0.40}\right) \sqrt{0.00204, 577} \left(\frac{0.509^{7/2}}{0.0423}\right) \left(\frac{1}{\sqrt{17,439}} - \frac{1}{\sqrt{21,087}}\right)$$

$$Q = \frac{Z(10,059)}{131-337} = 0.456$$

$$E = 778 \left(\frac{0.79}{0.39} \right) \sqrt{0.00204.337} \left(\frac{0.4563/2}{0.0439} \right) \left(\frac{1}{\sqrt{3689}} - \frac{1}{\sqrt{10,430}} \right)$$

E = 3.37 hrs meets regit

Good: meet MIL spec climb regits.

Reguirements:

RC > 500 fpm, OEI, S.L, fully baded.

Rc = 33,000 · RCP

$$RCP = \frac{N_P}{W/P} - \left[\frac{\sqrt{W/S}}{19C_L^{3/2}/C_D} G^{5/2} \right]$$

$$RCD = \frac{0.86}{6.62} - \left[\frac{\sqrt{44.C}}{19 \cdot 14^{\frac{3}{2}}} \right] = 0.022$$

RC = 726 fpm.

$$CGR = \frac{PC}{V} = \frac{726 \text{ fpm}}{1.1(163)60} = 0.067$$

Bad: same requirements.

$$2CP = \frac{0.81}{8.91} - \left[\frac{\sqrt{38.6}}{19 \cdot 1.4^{3/2}} \right] = 0.0195.$$

RC= 33,000(0.0195) = 645tpm

$$CGR = \frac{RC}{V} = \frac{645}{1.1(152)60} = 0.064$$

Ugly: same requirements

$$RCP = \frac{0.79}{4.12} - \left[\frac{\sqrt{32.4}}{19 \cdot \frac{1.632}{0.702}} \right] = 0.023$$

$$CGR = \frac{759}{1.1(106)60} = 0.108$$

Combat Radius;

Good:
$$R = 326 \left(\frac{np}{cp}\right) \left(\frac{L}{D}\right) ln \left(\frac{Win}{VVind}\right)$$

- inise:
$$\ell = 326 \left(\frac{0.86}{0.39} \right) \left(6 \right) \ln \left(\frac{1}{0.894} \right)$$

-
$$51$$
 course: $R = 326 \left(\frac{0.81}{0.39}\right) (6) \text{ fm} \left(\frac{1}{0.981}\right)$

R = 77.9 nm

total combat Radius: 560 nm regula " " 1 : 400 nm

Bad:

- cruix:
$$R = 376 \left(\frac{0.81}{0.39}\right) (6) \ln \left(\frac{1}{0.978}\right)$$

R= 90.4 nm

- S.L. cruiss:
$$R = 326 \left(\frac{0.81}{0.39} \right) (6) \ln \left(\frac{1}{0.981} \right)$$

R= 77.9 nm

- · total combat radius: 168 mm
- · required " 11 : 120 nm

$$R = 326 \left(\frac{0.31}{0.39} \right) (7) \ln \left(\frac{1}{0.985} \right)$$

R= 76.4 nm

5.L. (vuix:
$$R = 326 \left(\frac{0.81}{0.39}\right)^{(7)} \ln \left(\frac{1}{0.983}\right)$$

R = 81.3 nm

total combat radius = 157 nm

Combat Culing ;

$$T = 6999 \Rightarrow P = \frac{T \cdot V}{550} = 3181 \text{ hp.}$$

from the puformance diagrams: at 250 ft/s

$$\sigma = \frac{3181}{19,000} = 0.318 \Rightarrow h = 34,330 \text{ At}$$

from the performance diagrans at 250 f7/s

$$\sigma = \frac{1441}{4,000} = 0.360 \Rightarrow h = 31,000 ft$$

from the purformance diagrams at 250 ft/s

$$\sigma = \frac{680}{2000} = 0.3404 \Rightarrow h = 32,539 ft$$
B1

Endurance:

1) Good curplane: I hr @ 5,000ft. Vety = 145 Kts. (assumed)
from Roskam, Pt. VII:

$$E = 778 \left(\frac{n_e}{c_p}\right) \sqrt{\rho \beta} \left(\frac{\zeta_0^{3/2}}{c_D}\right) \left(\frac{1}{\sqrt{W_{end}}} - \frac{1}{\sqrt{W_{in.}}}\right)$$

$$C_1 = \frac{33.677}{61.2.890} = 0.618$$

$$C_D = 0.0252 + 0.0496(0.618)^2 = 0.0442$$

Sa:

$$E = 778 \left(\frac{0.86}{0.40}\right) \sqrt{(0.00204)(890) \left(\frac{0.618^{1.5}}{0.0442}\right) \left(\frac{-1}{34.010} + \frac{1}{33.345}\right)}$$

E = 1.33 hrs

(muts reguirement) (33 % discrep)

Old fuel fraction: 0.695 19,200

Old fuel fraction: 0.695 10,200

New fuel fraction: 0.743 8,620

SAVINGS: 1,580 lbs > 15.5% of old fuel weight.

T-0 Groundiun

Bad airplane: 1,200ft, soft field.

With 167.6 ft/s Lift-off speed => \$700 = 1328ft.

· to meet 1,200 ft requirement, the liftoff speed has to be:

VATIONAL | 42.389 200 SHEETS 5 SQUARE

VLOF = 159.3 ft/s er Vs = 159.3 = 144.7 ft/s

this would require a 40+:

 $G = \frac{2(39,725)}{\max(0.002377)(890)(144.7)^2} = 1.79$

which translates into a ΔQ of: 0.39

which can be attained with the wisting Haps (lancling (_ 15 2 1.80).

APPENDIX C

The purpose of this appendix is to present the spreadsheet used in the calculation of the stability and control derivatives. The derivatives were calculated for 8 flight conditions.

Table of Contents

How to Read	the Spreadsheet	C1
Special Not	ices about the Spreadsheet	C4
Table C.1	Lifting surface parameters	C5
Table C.2	Fuselage cross-sectional parameters	C6
Table C.3	Mach number dependent parameters	C7
Table C.4	Longitudinal and lateral-directional	
dimens	ional stability derivatives	C25
Table C.5	Longitudinal airplane transfer function	C39
Table C.6	Lateral-directional airplane transfer	
funct	ion	C46

APPENDIX C:

To carry the calculations in an iterative method, the spreadsheet format is used. The following 24 tables are presented in Appendix C.

- C.1 Lifting surface parameters
- C.2 Fuselage cross-sectional parameters
- C.3 Mach number dependent parameters
- C.4.i Longitudinal and lateral-directional dimensional stability derivatives
- C.5.i Longitudinal airplane transfer function
- C.6.i Lateral-directional airplane transfer function
 - i = 1 Take-off
 - i = 2 Cruise #1, and loiter
 - i = 3 Cruise #2
 - i = 4 Dash-in
 - i = 5 Maneuver
 - i = 6 Dash-out
 - i = 7 Landing

A copy of References 1 through 8, and 10 are required to follow the method implemented into the spreadsheet.

HOW TO READ THE SPREADSHEET.

The spreadsheet format is simple to use. There are three standard line formats: Table C.1, Table C.2 and all the others.

Table C.1 presents the lifting surface parameters. In this table the following lifting surfaces are characterized: wing, horizontal and vertical tails, trailing edge flaps, aileron, elevator and rudder. Table C.1 header displays reference, unit, variable and the control surface of interest.

Under **Reference** the standard format is the following:

```
T8.1VI217 ---->> Table 8.1, Ref.VI, p.217
VI27 ----->> Ref.VI, p.27
F12.3II283 --->> Figure 12.3, Ref.II, p.283
(12.1)II284 -->> Equation (12.1), Ref.II, p.284
mgc ----->> (description of the variable) mean geometric chord
```

There can be 9 different reference symbols:

```
I for DESIGN BOOK PART I, Ref.1.
II for DESIGN BOOK PART II, Ref.2.
III for DESIGN BOOK PART III, Ref.3.
IV for DESIGN BOOK PART IV, Ref.4.
V for DESIGN BOOK PART V, Ref.5.
```

```
VI for DESIGN BOOK PART VI, Ref.6.

VII for DESIGN BOOK PART VII, Ref.7.

one for AIRPLANE FLIGHT DYNAMICS PART I, Ref.8.

red for AIRPLANE AERODYNAMICS AND PERFORMANCE, Ref.10.
```

The reference symbol always precedes the page number.

In the format of Table C.1 the variable to the left applies to the lifting surfaces to the right. As an example the planform areas S are given as follow:

```
Reference Unit Variable Wing H.tail V.tail TE.flaps (etc). Areas sqf S 890 160 120 36.85
```

In some cases the space is blank under a lifting surface. This means that there is no need for this variable in the analysis.

Table C.2 present the fuselage cross-sectional parameters. The GOOD airplane fuselage is sectionned into 13 sections for the aerodynamic analysis. Parameters such as cross-sectional area, perimeter, wet area, height, fuselage station, side area, width, etc. are tabulated under each fuselage cross-sections. References use the same format as mentionned above.

The possible units in the unit column are the following:

```
cu.ft
               cubic feet
d ·
         degree
/d
        per degree
/d2 or /d^2 per degree square
              feet per minute
fpm
fps
               feet per second
ft
         feet
ft/s2
               feet per second square
        horse power
hp/sqf
        horsepower per square foot
hr
        hours
in
         inches
kts
               knots
               nautical miles
n.m.
psf
               pounds per square foot
psi
               pounds per square inche
        radian
r
/r
        per radian
/(r.d)
        per radian degree
r/s
               radian per second
        seconds
Sh/4
              horizontal tail area divided by 4 (sqf)
slugs
               slugs
slug.sqf slugs per square foot
              square feet
sqf
              square inches
sqi
```

VA volt ampere

pounds

#/gal pounds per gallon

#/hp/hr pounds per horse power per hour

#/hr pounds per hour

#/s pounds per second

slug/ft3 slugs per cubic foot

#/h/shp pounds per hour per shaft horse power

#s/sqf pounds seconds per square foot

% percent

[blank] dimensionless

[other] description

When more than one unit figure on the same line the variable values to the right appear in unit order. As an example in Table C.1 the span for the lifting surfaces reads as follow:

The left value under each lifting surface is in inches (b = 1010 in, b = 346 in, b = 124 in). The right value under each lifting surfacewis in feet (bh = 84.3 ft, b = 28.8 ft, b = 10.33 ft). The same method applies for r,d (degrew, radian), khs,fpm (knotsy feet per minute), etc.

In all other Tables (Table C.3, Tables C.4.1-7, C.5.1-7 and C.6.1-7) the standard line format is the following:

Example 1.:

Reference Units Variable Given Measured Computed M=0.0M=0.9 (6.5)V85 # Wsprch 1505

Example 1 reads as follow: Equation (6.5), Reference Design Book Part V, page.85, is used to compute the supercharger weight variable W sprch. The computed value is 1,505 lbs, (# under units for pounds).

Example 2.:

Reference Units Variable Given Measured Computed M=0.0....M=0.9 I7 %, * %WTO, Wtfo 0.500 197

Example 2 reads as follow: Reference Design Book Part I, page 7, the units are: to the left a percentage, and to the right pounds; the variables are a percentage of the take-off weight W_{TO} , (explained in the reference), and the weight of all trapped (=unusable) fuel and oil W_{tfo} . The given value 0.500 is an input for %WTO, and 197 lbs is the computed value for Wtfo.

Example 3:

Reference Units Variable Given Measured Computed M=0.0....M=0.9

```
Vertical tail .....>> (5.13) (5.15) (5.18) ... (ave) V71-74 # Wv...>> 98 198 392 ... 229
```

Example 3 reads as follow: Equations (5.13), (5.15), and (5.18) from Reference Design Book Part V, on pages 71 to 74 are used to compute the vertical tail weight. The units are pounds, the variable is W_V . The computed value with equation (5.13) is 98 pounds, the computed value with Eqn.(5.18) is 392 pounds, etc.

There is a computed average value under (ave). Considering the aircraft analyzed, the appropriate equation values are averaged and the vertical tail weight results. The average value is directly fed to the weight and balance section of the spreadsheet.

Note that the weight estimation section of table C.3 was not used for the GOOD airplane, but, since it is an integral part of the spreadsheet program, and that other variables are inserted within the weight section it is presented. The reader must be aware that not all the variables of Table C.3 are used in the computation of the GOOD airplane aerodynamic characteristics. The performance characteristics of Table C.3 must not be regarded as verified values.

SPECIAL NOTICES ABOUT THE SPREADSHEET:

Values given in different sections of the spreadsheets may be:

- 1.1) GIVEN values
- 1.2) MEASURED values
- 1.3) COMPUTED values
- 1.4) MACH DEPENDENT values
- 1.5) LIFTING SURFACE DEPENDENT values
- 1.6) FUSELAGE CROSS-SECTION DEPENDENT values
- 1.7) EQUATION DEPENDENT values

Always refer to the first title above the value.

Despite the title of Table C.3 "Mach Number Dependent Parameters", there are many variables in that table which are not Mach number dependent.

Table C.1 LIFTING SURFACE PARAMETERS	TING SU	RFACE PARA	METERS						
Reference	Uhit	Variable	uing	H.tail	V.tail	TE.flaps	aileron	elevator	rudder
18.1V1217 V127 19.121121	NACA	airfoil A	642R215	641012 5.1960	641012				
18.1V1216	ъ	aclmax	0.25 15						
18.1V1216	d,r	aol	-2 -0.034						
Span	۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲	р	1010 84.380	346 28.83	124 10				
U1230 447	in, rc	cl-1	132 11	ر 19	69.5.C	300 0 2/22 200 0 2/32	300 0/		
IV215R2p30	/d,/r	cla	0.095 5.4430	0.1062 6.0876	0.1062 6.0876		carc 0.3U3	ce/ cn	
V1230		cla/clath							
18.1V1217		clmax	1.5						
T8.1cVI217		CMO							
VI 428		cos(sweep1/4)	1/4) 0.9762						
V1376		cos(sweep1/4)^2	ç						
		cos(sueep1/2)		,	1				
Koot chord	ın, ft		202.8 16.9	62 5.1	83				
11p chord	ın, tt		50.4 4.2						
V129	d,	د	-2 -0.034						
VI392	ъ.	et tan(sug	eep c/4)	0E+00					
Incidence	d,r	i(u,h,,p)	0	0					
F3. 12one72			1.0613						L-17
laper ratio] ampda		0.677			مودي		
L.E. sweep	d,	lampda LE		0	24.5			-	
c/4 sweep	P,	lambda 1/4	4 12.5 0.2181	0	22				
c/2 sweep	D,	Lambda 1/2		0	19 0.3	.,.,			
Area ratio	7	5 5(h. v. n)/5		180	1248	æ.	 	21.67	11.78
F10.7VI382	d,r	Dihedral	0	0	Camac				
F12.311283	şqf	Sexp.plf	789.86	16					
(12.1)11284	Sq.	Swet.plf	1638.9	,	24				
Root thickness ratio	ratio	(t/c)r	0.15						.
Tip thickness	ratio	(t/c)t	0.15	0.12					
000		tan(sweep1/4)	0						
V1428, 248		tan2(sweep]/4)	p1/4) 0.0491		•				
(+/c)r/(+/c)+	_	taile Conee			0.110				
W69, 73, 72	in, ft		30.42 2.535	7.44 0.62	9.96 0.83				

Table C.2 FUSELAGE CROSS-SECTIONAL PARAM	LAGE (ROSS-SECTI	ONAL PAR	PMETERS												
Fuselage cross-sections:	section	ons:	()	⟨\$		\$	<2>	(3) (4) (5) (6)	\$	�	<7> <8> <9> <10> <11> <12> <13> <tai1></tai1>	\$ \$	⊕	⟨12⟩	<13	<tail></tail>
Cross-s.area Perimeter	sqf ft	Sxi Pfi	3.0106 14.551 24.445 21.380 20.616 25.525 24.216 19.853 17.638 15.637 12.664 10.471 7.6576 6.1522 13.613 17.933 16.493 16.100 18.064 17.540 15.969 15.053 14.137 12.697 11.519 9.8174 8.5084	14.551 13.613	24.445 17.933	21.380 16.493	20.616 16.100	25.525 18.064	24.216 17.540	19.853 15.969	17.638 15.053	15.637	12.664 12.697	10.471 11.519	7.6576	8.5084
Wet area	sqf.	Swetfusi (8.4901	45.461	72.55	79.181	74.966	106.19	139.45	73.885	15.2%	14.392	13.230	11.940	10.520	4.5178
F 1U. 1UVI 383	‡ ‡	dsx1/dx1 x1	1.3083	2.5U83 0	2.1508	-U.666 0	-U.165	۳. رو 0	-0.167 0	68 9 9	-2.245 0	-2.029 0	-3.014 42.118	-2.223 0	-2.853 0	
Height	ţ	hfi	1.9166	4.8333	6.9166	5.8333	5.25	S	S	4, 3333	4.0833	3.9166	3.5833	3,3333	ന	2.6666
Fusel.station	£	F.5.	2.3	6.9	11.5	16.1	20.7	26.916	34.75 35.75	39.159	台.1名	41.131	42.118	43.104	44.090	44.583
Side areas	sqf	5side(i) 2.4245 15.603 27.160 29.472 25.619 32.020 39.363 20.682 4.1707 3.9642 3.7164 3.4274 3.1383 1.4040	2.4245	15.603	27.160	29.425	25.619	32.020	39,363	20.682	4.1707	3.9642	3.7164	3, 4274	3.1383	1.4040
F8.116VI327	¥	,xi	4.6	4.6	4.6	4.6 4.6 4.6	4.6	7.8333	7.8333	0.9861	4.6 7.8333 7.8333 0.9861 0.9861 0.9861 0.9861 0.9861 0.9861	0.9861	0.9861	0.9861	0.9861	
=	ţ	^x15, cf, ^x813	×813	23	23 15.666 5.9166	5.9166										
=	ţ	xi	20.7	16.1	11.5	6.9		H.3	3.9166	0.4930	1.4791	2.4652	3.4513	4.4375	5,4236	
=	£	Wfi	7	3,8333	4.5	3 4.5 4.6666	5	6.5	6.1666	5.8333	5 6.5 6.1666 5.8333 5.5 5.0833 4.5 4 3.25	5.0833	4.5	4	3.25	2.75
#		xi/cf	1.3212	1.0276	0.7340	0.4404	6									:
F8.112VI321	70	iclfi	-	-14	-17	-14 -17 -11	9		æ	2-	7	-5	-12	-19	-19	
	L	iclfi	-0.191 -0	-0.244	-0.2%	.244 -0.296 -0.191 -0.104	-0.104	0	0.0523	-0.383	0 0.0523 -0.383 -0.017 -0.034 -0.209 -0.331 -0.331	-0.034	-0.209	-0.331	-0.331	

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	NUMBE	R DEPENDENT	PARAME	ERS													
Reference	Unit	Variable	Given	Given Measu Compu	Compu	01	M =.05	M=. 10	Æ.15	M=.20	M=.25	M=,30	M=,35	M=.40	₩.45	₩.50	Æ.55
12.15147 11.1red11 alpha	fps d	CE 40 10	0.2705	o paads	0.2705 1116.4 Speed of sound @	74.9	ئ.	7	ę,	-2	7	0	-	2	æ	-5 -4 -3 -2 -1 0 1 2 3 4 5	5
(4.34)VI46 *	r D	o o	a=f(M,)	? :		<u>,</u>	2.5992 0 148.92 3). 6310)6. 159	0.2666 15.275	0.1390 7. 9 652	0.0799 4.5807	0.0478	0.0284 1.6308	0.0158 0.9088	0.0071 0.4124	0.6310 0.2666 0.1390 0.0799 0.0478 0.0284 0.0158 0.0071 0.0030 0.0014 36.159 15.275 7.9652 4.5807 2.7412 1.6308 0,9088 0,4124 0.1734 0.0855	0.0014 0.0855
airfoil,wing	, م	ax, axneu	21	5	12.022												
VI394	• •	A/cos(lambdal/2)	oda1/2)	1.202.1	8.0888 9.0888		;										
(10,109)VI446	,	alcruise) 1097.1 speed ada	10201	o paads	of sound at 5000 ft 0.6760	at 5000	<u>د</u>										
(10.94) VI 437		ade, adeCL/adecl	'adec]		0.2418 1.0351	.0351											
F8.53VI261 (10.66)VI <i>422</i>		(ade)c] adf			0.7189 n 4191												
FB. 17V1230		adf	4.0														
VII164		a[-]/g	0. 1														
1,882		Agm, Agn	ස	12													
	sqi, sqf Rinl	Rinl	•	374.4	2.6												
VIII33 E9 41012424jing	p,	alpha(cruise)		טאָל ר	0												
(8.21)VI245	L	a joe		96.5	ſ	-0.072 -0.072 -0.072 -0.072 -0.072 -0.072 -0.072 -0.072 -0.072 -0.072 -0.072 -0.075	- 220	A 022	COU U-	-0 622	-0 02	CC 0	-0.02	- CC	-0.02	020	A10 0-
F8. 42VI247		(30)M/(30)M=i	i∓i			-	-	-	-	-	-	-	-		1	0.9	0.75
F10.19VI391		Aveff			1.3429												
(10.64)VI422		8				0 7) 8866), 9952	0.9892	0.9807	0.9697	0.9561	0.9398	0.9205	0.8983	0.9988 0.9952 0.9892 0.9807 0.9697 0.9561 0.9398 0.9205 0.8983 0.8727 0.8436	0.8436
12.15(1)47		20 (0.83					!									
(10.53)V1417							0.9987 (9949	9949 0.9886	0.9797	0.9682	0.9539	0.9367	0.9165	0.8930	o	0.8351
F10.35V1418		BA/k(wing)	_		6	9.2347 9.	9.2116 9	9, 1423	9.0269	0. 36 8. 8653	0.36 0.3373 8653 8.6575	0.71 8.4035	0.31 0.8773 4035 8.1034	7.82 2.84	727 7 3646	4	9260 6.4412
=		BRh/kh(h.tail)	(lie)			, N	5.3494	5.3092	5.2422	5.1483	5.1483 5.0276 4.8802	4.8802	4.7059	4.7059 4.5048 4.2768 4.0221	4.2768	4.0221	3.7406
F10.46VI443	۲	BC' 1d/k		0.375										<u>}</u>			
F10.35VI418		(BC1p/K)CL=0(wing)	=0(wing.	~	figure -	rre -0.475 -0.473 -0.472 -0.47 -0.468 -0.467 -0.465 -0.448 -0.431 -0.413 -0.396 -0.379	1,473 -	-0.472	-0.42	-0.468	-0.467	-0.465	-0.448	-0.431	-0.413	-0.3%	-0.379
117.00	.;	(BClp/K)CL=0(h.tail)	.=0(h. ta:	il) Ec) figure		-0.4	 3¥	-0.389	-0.383	-0.377	-0.371	-0.366	-0.36	-0.336	-0.312	-0.288
75, 1782	, L	Bom. Bon	0.04	90	. 2204												
F10.17VI390		bh/1f			0.6467		-										
F10.18VI391	in, ft	· [五]		124	124 10.333												
(5.2)VIp128		à 2 8			-	Ú	.8970	1.4524	0.1080	0.0502	0.0344	0.0287	0.0263	0.0252	0.0245	6.8970 0.4524 0.1080 0.0502 0.0344 0.0287 0.0263 0.0252 0.0245 0.0242 0.0240	0.0240

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	ACH NUMB	R DEPENDEN	T PARAMETE	ERS											
Reference	Unit	Variable	Given	Measu C	Compu M	₩.0 ₩	M=.05 M=.10	0 115.15	M=. 20	1.25 M=	표.30 표	M=.35 N=.40	40 作.45	M=,50	₩.55
		88	2	다 다 다		0.0	0.0279 0.0278 0.0623 0.0622		0.0278	0.0278 0.0	0.0278 0.0277 0.0615 0.0612		0.0277 0.0277 0.0276 0.0609 0.0605 0.0601		0.0276
Rep4	TO & Lar TO Lan Cruise	TO & LandCD clean TO CDFlapsGU CDFlapsGU Lan CDFlapsGU COFlapsGU COFlapsGU COFlapsGU	0.0222 0.0322 0.0522 0.0472 0.0672		0.75 0.75 0.75 0.75 0.8	7.1	7.1688 0.4688 0.1104 0.0501	8 0.1104		0.0336 0.0277	277 0.0251		0.0239 0.0232	0.0229	0.0226
(10.18)VI379	* * * *		0			5.2 0.1 0.3	5.2479 1.3191 0.1313 0.1320 0.3940 0.3961	1 0.5916 0 0.1332 1 0.3998	0.3371 0.1350 0.4050	0.2194 0.1556 0.1373 0.1402 0.4119 0.4207		0.1173 0.0925 0.1438 0.1482 0.4315 0.447	25 0.0757 32 0.1535 47 0.4606	0.0638 0.1599 0.4797	0.0553 0.1675 0.5027
VIII.26 VIII33 (10.93)VI437 (10.89)VI435 VIII42	* *	CUCLIND LOW COC+stores CODE COIN	로 원 자	oo ö	0.0624 0.0307 0.0433		00	00	00	0 0	00	0 0	0 0	0 0	0.0
(5, 1)VI128 (4, 6)VI23 VI144 (10, 10)VI376	÷.	66666666666666666666666666666666666666		o o	0.0235	0.0	0.0088 0.0075 0.0066 0.0059 0.0058 0.0057 -6.444 -6.788 -0.603 -0.147 -0.053 -0.024	5 0.0066	0.0075 0.0066 0.0059 0.0058 -6.788 -0.603 -0.147 -0.053	0.058 0.0	057 0.0	356 0.00° 312 -0.0°	0.0057 0.0056 0.0058 0.0059 0.0058 -0.024 -0.012 -0.007 -0.004 -0.002	0.0058	0.0059
F5. 20VI 129 F4. 3VI 25 T5. 1V82 (5. 22. 24)VI 11	26.127	<u>5</u> 4455	0.004	figure 0.6361 0.3207	figure>>	0.0	0.0035 0.0031	1 0.0029	0.0026 (0.0026 0.0026 0.0025 0.0024 0.0024 0.0024 0.0023	0.0 \$20	0.00°	24 0.0024	0.0023	0.0023
f(a)CLa@#.35 40 deg plain flaps (8.4)V1226 (10.6)V1374	flaps	2 2 2 2 2 2	i		-0.422 1.1699 1.5928		-0.335 -0.247 1.2574 1.3449 11.987 2.9967		-0.160 -0.072 0.0144 1.4324 1.5198 1.6073 1.3319 0.7491 0.4794	0.0144 0.1 1.6073 1.6 0.4794 0.3	0.1019 0.1894 1.6948 1.7823 0.3329 0.2446	994 0.2769 (323 1.8697 (446 0.1872 (0.1019 0.1894 0.2769 0.3644 0.4518 0.5393 1.6948 1.7823 1.8697 1.9572 2.0447 2.1322 0.3329 0.2446 0.1872 0.1479 0.1198 0.0990	0.4518 2.0447 0.1198	0.5393 2.1322 0.0990
f(a)CLa@F.2 (8, 42)VI272 (10, 22)VI381	マナナマ	CC3 CC3 CC3 CC3 CC3 CC3 CC3 CC3 CC3 CC3		ಕ	CL(a)==-0.397 CL(a)==-0.397 0.0797 4.5678 0.0689		-0.315 -0.233 0.0798 0.0803 4.5761 4.6012 1.4428 1.4585 0.0690 0.0693		-0.068 0.0821 4.7042 1.5236 0.0707	0.0131 0.0 0.0835 0.0 4.7844 4.8 1.5752 1.6 0.0718 0.0	0.0952 0.1773 0.0852 0.0874 4.8862 5.0120 1.6418 1.7259 0.0731 0.0748	0.1773 0.2594 0.0874 0.0901 5.0120 5.1651 1.7259 1.8307 0.0748 0.0768	94 0.3415 31 0.0933 51 5.3499 37 1.9609 58 0.0791	0.4236 0.0972 5.5720 2.1224 0.0819	0.5057 0.1019 5.8386 2.3236 0.0852

Table C.3 MAC	H NUPB	MACH NUMBER DEPENDENT PARAMETERS	PARAMETERS													
	L nit	Variable	Given Measu	Compo	T.	₩.05	₩ -,10	7.	K: 2	ME 25	Se	ች ኢ	4	₹ 7.	<u>.</u>	7 7
				-		ı					3	?			1	00
(8.22)VI248	7	CLah		ci	3.9483 3	3.9547	3.9741	4 FINS .	4 0535 4	4 1149	4 1972	4 2021	C100 P	4 5370	A C07A	A 00E7
VI419	7	(CLah)CL=0		4.3150												
(8.42)VI272	/r	CLaP			0	0	0	0	0	0	0	_	0	-	C	_
	₽/	CLav		0	0.0323 0	.0326	1.0327	0.0326 0.0327 0.0328 0.0329			.0331	0.0331 0.0333 0.0335		0.0338 0.0340	0.0340	D 034
(8.22)41248	۲/	CLav		-	1.8527 1.	1.8729 1.8754	8754	1.8795		1.8927	1.9016	1.9120		1.9368	1.8510	1.9660
	P.	CLau		0		0.0717 0.0721					0.0769 0.0791			0.0849 0.0888	0.0888	0.0934
(8.22)	/r	CL.eu.		4,	4.1005 4	4.1086 4	4.1328	4.1739	4.2328		4.4102	4.5335		4 B620	5 P881	5 355B
VI419	7	(CL aw)CL=0		4.5789											1	2
	P	CLauf		0	0.0716 0	0.0717 0	0.0721	0.0728 (0.0739 (0.0252	0.0770	0.0791	D 0818	0 0849	0,088	2000
(8.43)VI272	7	CLauf		4	4.1030 4										7.000 5.000	2500
(10.33)VI389	7	CIB			7	-0.355					100				7.07.5	-0.030
=	7	C18		CLuf = 0.3							- 043				ביים פ	
	7	C18		CLwf = 0.9		0.0611 0					- 120 CP					
F10.23VI394	P/	(CIB/CL)A(w)	(C1B/CL)A(wing, H. tail)	0.0001	g										5	000
F10.20VI393	P/	(CIB/CL)swe	(ClB/CL)sweep1/2 (wing, H. tail)	H.tail) -9		06+00										
F10.26VI396	B	ClB/et[tan(sweep1/4)](wing, H. tail)	(sweep1/4)]	(wing, H. tai	·		-36-05									
F10.24VI395	74,5	C1B/gamma(wing, H. tail)	ing, H. tail)	-2£-04 -2£-04	I) 									
(10.35)VI392	74,5	C18/gamaa(wing, H. tail) -1E-05 -1E-04	wing, H. tail.) -1E-05 -11	E-04											
(10.38) VI 397	7	CIBH	,		•	-0.017 -	-0.017	-0.017	-0.017	-0.012 -	-0.017	-0.012	-0 017	-0.017	-0 017	710 0-
VI397	۲,	C18hf			7	-0.229 -	-0.279 -								220	2000
(10.39)VI397	7	C18v			Ö		0.0856	0.029			55.7	קינולים			7.0	0.21.7
(10.34)VI392	7	C18wf			5 T		- 110									
•	7	ClBuf		CLuf = 0.3			- 600									
=	7	C1Buf		11												170.0
(10.37) VI 397	P	(^ClB)zw(wing,H.tail)	ng, H. tail)	8	6 8 8										5.7	-U. U43
Trim diagram		CL+^CLct1	,	9		-0.236 -	-0.149 -	-0.061 C	0.05%	0.1130.0.2005		0 2880 0 3255		07C2 0 4035 0 6C36 0	5504	0,520
3		CL-CLct1		P					-121	-0 084 0 m33				CCSC 0 050C 0		0.0377
VI 126		CLclimb	0.9							3		2	3	0.000	J. 2026	
(5.39) 11137		Clari		0.3301												
(5.29,30)VIII33	~	Cler		0.3329 0.3329	3329											
(8.113) VI 346		Act1				0.0909	0.0913	0.0921	0.0932	0.094K 0	0.0964 0.0985		0 1012 0	1042	1000	0 1133
(10.110,108)VI446 /r	146 /r	clda,Clda	3.68	~	Ö	0.2201 0					0.2413					0.1163
(10.107) 7446	<u>ر</u>	C'lda			ö	0.3256 0	0.3281		0.3383		0.3569					0.110.0
(10.95) VI 438	7	CL de			0	0.1736 0.1745		0.1759 0	0.1780	0.1807						21.0
(10.124)VI461	/r	Cldr			Y	-0.072				0.0020		0.0130				2510 0
	۲	Cldr		11	ö	0.0128 0	0.0128	0.0128					0.031			0.010
a	ı,	Cldr		CL = .75	0	0.0001										
													- 1	1	1	

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	CH NUMBE	R DEPENDENT	PARAME	TERS														
Reference	Uhit	Variable	Biven	Measu	Сомри	¥	M=.05	Ħ=. 10	M=.15	M=.20	M=, 25	M=.30	M=.35	M =. 40	1 1/±.45	5 M=.50	0 M≃.55	22
F8.15V1230 F8.14V1228 /r (8.119,90)V1352,436 V1144	/r 52,436	cld/cldth(elev,flap,aile,rudder) (cld)th(elev,flap,aile,rudder) ^CLh,CLh	(elev,fla lev,flap,	ap,aile,	, rudder, udder)	4.78	0.96 4.6 0	0.8 9.6 0	0.8 4.55 0	0.95	0	0	0	0		0		0
(10.91)VI436 (3.11)VI20 (5.42)VI1141 (5.62)VI1153	P/	CLih CLih CL(L/D)max CLItr		— 	0.7023 0.6524		0.0125 0.0125 0.7180 0.7215	0.0125 0.7215	0.0126 0.7275	0.0128	0.0125 0.0125 0.0126 0.0128 0.0130 0.0132 0.0135 0.0139 0.0143 0.0148 0.0154 0.7180 0.7215 0.7275 0.7360 0.7471 0.7612 0.7784 0.7991 0.8238 0.8529 0.8871	0.0132	0.0135 0.7784	0.0139 0.7991	0.014	3 0.014 3 0.852	9 0.01 9 0.86	171
T3.1191, VI217 (8.32) VI268 VI322 (8.33) VI268 (10.51) VI417 F10.36VI420	÷.	wing Clean CLmax 1.565 1.3 CLo CLoh CLouf Clouf Clp (CLp)CDL/(CL)^2 -0.01	uing 1.565 1.565 (CL) ~2	Clear 1.3 -0.01	1.4	Land 1.5	Manen 1.5 0.0924 (0 0 0.0924 (0.0929 0.0929 -0.445	0.0938 0.0938 -0.400	Manen 1.5 0.0924 0.0929 0.0938 0.0952 0 0 0 0 0.0924 0.0929 0.0938 0.0952 -1.414 -0.445 -0.400 -0.401	Manen 1.5 0.0924 0.0929 0.0938 0.0952 0.0969 0.0992 0.1019 0.1053 0.1094 0.1030 0.0903 0 0 0 0 0 0 0 0 0 0.0924 0.0929 0.0938 0.0952 0.0969 0.0992 0.1019 0.1053 0.1094 0.1030 0.0903 -1.414 -0.445 -0.400 -0.401 -0.415 -0.434 -0.445 -0.461 -0.483 -0.514 -0.556	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1019 0 0.1019 -0.445	0.1053 0 0.1053 -0.461	0.109 0.109 -0.48	4 0.103 0 (4 0.103) 3 -0.51	0 0.09	20 0 25 25 25 25 25 25 25 25 25 25 25 25 25
(10.56)VI419 (10.59)VI421 (10.52)VI417 (10.60)VI421 (10.52)VI417	****	(Clp)0ih/(Clp)0ih=0(H.tail) ('Clp)drag Clph 0.55h/S(bh/b)2 0.0 (Clp)h Clpv	CCIp)Diki	1,12	5 0	-0.002			-0.013 -0.004 -0.002 -0.393	-0.004 -0.004 -0.002 -0.395	-0.002 -0.003 -0.379 -0.002 -0.408	-0.001 -0.003 -0.372 -0.002					0 -0.000 3 -0.003 2 -0.288 2 -0.002 9 -0.551	5228833
(10.72)VI424 (10.72)VI425 (10.70)VI424 (10.71)VI424	4444	CL 44 CL 45 CL 45 CL 45)#10		_)) 0.6917	0.6917 4 0 4 0 0	4.7874 4.0950 0 0.6923 (4.8095 4.1151 0 0.6943	4.8468 4.1490 0	4.8999 4.1973 0 0.7025	0.6917 4.7874 4.8095 4.8468 4.8999 4.9699 5.0580 5.1661 5.2962 5.4513 5.6346 5.8502 0.6917 4.7874 4.8095 4.151 4.1490 4.1973 4.2609 4.3410 4.4392 4.5574 4.6980 4.8640 5.0591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0580 4.3410 0	5.1661 4.4392 0.7268	5.2962 4.5574 0.7388	5.2962 5.4513 4.5574 4.6980 0 0 0.7388 0.7532	3 5.6346 3 4.8640 3 0.7705	5.8502 0 5.0591 0 0 5 0.7911	20,502
(10.81)VI428 " " F10.43VI431	7 7 7 9 7 7 7 7 9 7 9 9 9 9 9 9 9 9 9 9	Clr Clr Clr Clr		0.048	ດ = .3 ດ = .3		2.6033 0.1811 0.2878	0.6697 0.1813 0.2883	0.3681 0.1817 0.2892	0.3681 0.2656 0.1817 0.1821 0.2892 0.2905	0.6697 0.3681 0.2656 0.2183 0.1927 0.1773 0.1675 0.1609 0.1557 0.1514 0.1813 0.1817 0.1821 0.1827 0.1835 0.1845 0.1857 0.1872 0.1889 0.1911 0.2883 0.2892 0.2905 0.2921 0.2943 0.2970 0.3003 0.3044 0.3095 0.3157	0.1927 0.1835 0.2943	0.1773 0.1845 0.2970	0.1675 0.1857 0.3003	0.160	0.1609 0.1557 0.1514 0.1872 0.1889 0.1911 0.3044 0.3095 0.3157	7 0.15 9 0.19 5 0.31	57 = 12
(10.83)VI428 F10.41VI430 F10.42VI430 (10.84)VI429 (10.85)VI429	/r /r.d) /r	(Clr/CL)CL=0,M (Clr/CL)CL=0,M=0 ^Clr/et ^Clr/gamma	.0,¥ .0,¥ .0,¥		0.0440		3.2402	0.2409	0.2420	0.2437	0.2402 0.2409 0.2420 0.2437 0.2460 0.2489 0.2525 0.2569 0.2624 0.2691 0.2774 0.0601 -0.051 -0.015 0.0001 0.0074 0.0113 0.0136 0.0151 0.0161 0.0166 0.0168	0.2489	0.2525	0.2569	0.262	4 0.269	1 0.27	68

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	H NUMBE	R DEPENDENT	T PARAMETER	2												
Reference	Unit	Variable	Given Mea	Measu Compu	Ŧ	M=.05	M=.10	M=.15	M=.20	M=.25	M=.30	M=.35	M=.40	₩.45	M=,50	M=, 55
= :	/r	Clrv		CL = .25		1			1	0.0137	0.0138	0.0139		0.0141	0.0142	0.0143
= :	1	Clrv		n = .7	ıc		0.0001		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
(10.82) VI 428	٦,	Clre						0.38340	0.26540	0.21090	0.1813	0.1637	0.1523		0.1390	0.1346
= :	٦/	Clru		CL = .25	ıc				0.1684	0.16890	0.1697	0.1706	0.1717	0.1730	0.1747	0.1768
	/ r	Clre		ณ = .75	ıc			0.2890 0		0.2920 0	0.2941	0.2968	0.3002	0.3043	0.3093	0.3155
(10.11)/VI376		CLu					0.0288		0.02%	0.0303 0	0.0312	0.0323	0.0337	0.0353	0.0374	0.0401
(10.57)VIp419		CLu						1.1398 0	0.6478		0.2969	0.2226		0.1421		0.0977
VI392		CLuf						1.1398 0		0.4203 0	0.2969 (0.2226	0.1747			0.0977
Trim diagram		و گ	@ M=0.4				-0.007	-0.013 -	-0.019 -			-0.037			-0.055	
one413		Cal		;										-0.032	-0.033	-0.033
(10.19)VI381	۲,	Cma		Xcg(furd)						-0.401 -	-98e -0	-0.367	-0.341	-0.309	-0.264	-0.204
	۲:	Cma		Xcg(aft)	_			-0.002 0						0.1717	0.2367	0.3209
	₽,	ر												-0.002		-0.003
(10.24)/1382	۲,	Cma[.]				-3.984 -	-4.027	-4.101 -	-4.207 -	- 350 -	4.533	-4.765	-5.055	-5.414	-5.861	-6.416
(8.116) 91349		^Cm {cg(aft	^Cm{cg(aft,forw)-ref}		0											
Trim diagram		Cm+^Cmct]		@ M=0.4			-0.2%	-0.302 -	-0.308 -	-0.314 -	-0.320	-0.326	-0.332	6.338	-0.344	-0.350
Trim diagram		Ca-^Cmct]		@ M=0.4			0.2806		0.2687 0	0.2627 0	0.2567	0.2508	0.2448	0.2389	0.2329	0.2269
(8.114)VI346		Cact1					-0.260		-0.265 -	-0.269	-0.274	-0.281		-0.297	-0.308	-0.320
(10.96)VI438	<u>,</u>	Carde				-0.495 -	-0.497 -	-0.501 -	-0.502 -	-0.515 -	-0.525					-0.611
(10.92)VI436	7	C⋒ih							-2.098 -	-2.130 -						-2.529
(8.76)VI320		C⊪o				-0:030	-0.030	-0:030 -	-0.030 -				-0.031			-0.033
F8.98VI304	P	^cmo/et	-0.003	903												
(8.78)VI320		Cmof		•	-0.000	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.000	-0000-0	0.000 -	0.000 -	0.000	000.0	-0.000	-0.000	-0.000	-0.000
(8.79) VI 322		Cmoh				0	0	0	0	0	0	0	0	0	0	0
9061		(Cito)M/(Cito)M=0			3.9997	0.9997 1.0022 1.0011 0.9989 0.9978 0.9995 1.0053 1.0156 1.0308 1.0505 1.0741	.0011	1.9989 0	.9978	1,9995 1	.0053	1.0156	1.0308	1.0505		1.1010
	6429215	642A215 cmor, cmot	-0.04 -0.	-0.04												
		Cmowf							-0.030 -0.030		-0.031	-0.031	-0.031	-0.032	-0.033	-0.033
(8, 71) VI 305		Chour				-0:030	-0.03 -0.03	-0:030 -	-0.030 -0.030	0.030 -	-0.030 -0.030	-0.031			-0.032	-0.033
(8.70)VI302		Cacult-0		-0.030												
(10.75)	۱,	Ç₩d		ſ	-0.774	-0.774 -12.45 -	-12.51 -	-12.61 -	12.75 -	-12.75 -12.94 -13.18 -13.47 -13.82 -14.24	13.18	-13.47	-13.82	-14.24	-14.73 - 15.31	-15.31
(10.78) VI 426	/r	Cath			0	-11.67	-11.73		- 96 -11	-11.96 -12.14 -12.37	12.37	-12.65	-12.99	-13.39	-13.86	-14.42
(10.79)VI426	1	Cmqp			0	0	0	0	0	0			0			<u> </u>
(10.76) VI 425	/r	Caqu		1	-0.774	-0.774 -0.775 -0.777		-0.781 -	0.787 -	-0.787 -0.795 -0.804	0.804	0.816	-0.816 -0.830 -0.847 -0.868	-0.847	-0.868	-0.893
(10.77) VI 426	7	Cmqw/at M=0	o	-0.774		•					! !			: }	}	?
		CmT1														
(10.16) 91378		Calu				1.0682 -0.441 -0.032 -0.012 -0.007 -0.005	0.441	-0.032	0.012 -	0.007 -	0.005	-0.005	-0.004 -0.004 -0.004 -0.004	-0.004	-0.004	-0. DO4
(10.12)VI377		C⊪⊓				0.2787 0	0.1178	0.07490	0558 0	0.0558 0.0454 0.0390 0.0349 0.0309 0.0307	.0390	3.0349	0.0309	0.0307	0.0299 0.0290	0.0290

Table C.3 MACH NUMBER DEPENDENT PARAMETERS		ER DEPENDENT	T PARAMET	ERS	
Reference	Unit	Variable	Given	Measu Compu M=0	:0 N=.05 N=.10 N=.15 N=.20 N=.25 N=.30 N=.35 N=.40 N=.45 N=.50 N=.55
# #				CL = 0.3 Cl = 0.9	0.0069 0.0117 0.0168 0.0223 0.0284 0.0351 0.0428 0.0495 0.0622 0.0748 0.0878
F8.130VI343		((CNa)pi)KNi=80.7	(Ni=80.7	0.25	01.23.0 0001.0 ID-1.0 0021.0 1.001.0 2000.0 1.001.0 0000.0 0000.0 0000.0
(11.8)11265	/r	CnB	5v/4	30 Stores, Clean	0.0211 -0.008 0.0213
e b	= :	=	2v/2	3	0.0423 0.0124 0.0426 0.0101 0.0429 0.0091 0.0434 0.0084 0.0440 0.0074
F10.16VI390	=	=	35v/4		0.0635 0.0336 0.0639 0.0314 0.0644 0.0306 0.0652 0.0302 0.0661 0.0294
* :	=	=	λ	120 M=0.6	0.0847 0.0849 0.0852 0.0855 0.0859 0.0864 0.0869 0.0875 0.0881 0.0888
*	2	*	55v/4	150	0.1061 0.1065 0.1069 0.1074 0.1080 0.1086 0.1094 0.1102 0.1110
=	=	=	35v/2	180	0.1274 0.1278 0.1283 0.1289 0.1296 0.1304 0.1312 0.1322 0.1332
=	=	=	75v/4	210	0.1486 0.1491 0.1496 0.1503 0.1512 0.1521 0.1531 0.1542 0.1554
*	=		Š	240	0.1728 0.1738 0.1750 0.1763 0.1777
(10.40)VI397	/r	CrB			0.1303 0.1489 0.1502 0.1496 0.1496 0.1499 0.1499 0.1502 0.1506
=	<u>ر</u>	CrB		CL = 0.25	0.1506 0.1492 0.1491 0.1487 0.1492 0.1499 0.1502 0.1507 0.1512
3	۱,	ر ک			0.1518 0.1524
(10.42)VI398	<i>ا</i> د	CnBf	< Clean	ç	-0.035 -0.036
=		CnBf	< stores	Sa.	
(10.43)VI398	7	CnBy			0.1602 0.1806 0.1826
3 :	٦/	CnBv		$c_{L} = 0.25$	0.1805 0.1809 0.1815 0.1822 0.1831 0.1841 0.1852 0.1865 0.1878
3	7	Cn8√		*1	0.1876
(10.41)VI398	۲,	շո8 _ա		0	
(10.114)VI448	<i>'</i>	Enda			-0.059 -0.026 -0.015 -0.010 -0.007
3 :	٦,	Cnda		11	-0.006 -0.007 -0.007 -0.007 -0.007 -0.008 -0.008 -0.009
a	/r	Cnda			-0.020 -0.021 -0.021 -0.022 -0.022 -0.023 -0.024 -0.026 -0.027
(10.125)VI462	1	Cndr			-0.116 -0.117 -0.118
(4.6)\()32		CNmax+		1.7215	
(10.61)	۲	g G			-0.083 -0.039 -0.013 0.0035
3 :	٦,	رياً		ณ = .25	0.0369 0.0369 0.0368 0.0366 0.0365 0.0362 0.0360 0.0357
•	٦,	ري ک		11	0.0808 0.0806
(10.65) VI 422	۲,	(Cnp/CL)CL=0, M=0	0 , %-0		-0.115 -0.115 -0.115 -0.114 -0.114 -0.114 -0.114 -0.114 -0.114
_					-0.115 -0.114 -0.114 -0.114 -0.113 -0.113 -0.112 -0.111 -0.110 -0.109 -0.107
	(r.d)			0.0004	
	/(r.d)			0.0005	
(10.67) VI 422	<i>\</i> r	Cnpv			-0.032 -0.017
3 :	٠,	Cnpv		ณ = .25	-0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
=	۱.	Cnpv		11	-0.017 -0.017 -0.017 -0.017 -0.017
(10.62)	۲,	ndr J			-0.016 -0.006 0.0033 0.0133 0.0232 0.0330
:	7	Cnpu		ດ. = .25	0.0404 0.0404 0.0403 0.0402 0.0401 0.0400 0.0398 0.0395 0.0392 0.0389 0.0385

Table C.3 MACH	NUMBE	MACH NUMBER DEPENDENT PARAMETERS	PARAMET	ERS												
Reference	Uhit	Variable	Given	Measu Cor	Compu N	N=0 N=.05	S N=.10	0 M=.15	5 N=.20) N=.25	.±.30) M=.35	유. 유.	在.45	M:.50	N=.55
1								1					ł	1		1
	٦/	<u> </u>		 ဌ	 S	0.0380		9 0.0977	7 0.0974			0.0360	0.0953	0.094		
(10.86) VI 432	٦/	رغ د				-0.02			3 -0.125	5 -0.125		5 -0.125	. 40.126	-0.126		
=	7	ځ		겁	:. 8:	-0.124				1-0.124	1-0.125	5 -0.125	5 -0.128	-0.127	J. 128	-0.129
=	/r			ರ	75	-0.125	5 -0.125	5 -0.125		5 -0.126	-0.126	5 -0.127	-0.128	-0.129	-0.130	
F10. 45, 44VI 434, 433 /r	433 /r		(Cnr-/Q,	T	ж.	0										
(10.88) VI 432	۲,	Cnrv	twin			-0.073	3 -0.095	5 -0.121	1 -0.123	3 -0.123	-0.123	3 -0.123	1-0.124	-0.124	6.125	-0.126
•	' '	Cnrv		ಕ	= .25	-0.121		1 -0.121		2-0.122				-0.125		
•	۲	Cur.		 ப	۳. تا ا	-0.122		3 -0.123		1 -0.124			. 40.126			
(10.87)VI 432	۲,	Coru				-0.003	3 -0.002	2 -0.002		2 -0.002				-0.002		-0.002
=	7	Curu		<u>۔</u>	= .25	-0.003				2 -0.002						
=	7	Crew		<u>.</u>	۳. ا	-0.003										
(10.44)VI398	7	CnTB														
12.2(1)14	#/ho/hr	cp(cruise, loiter)	loiter)	0.6 0.	.53	•										
(10.7)VI374	•	CTx1				-5.222	2 2.1572	2 0.1574	4 0.0588	3 0.0366	0.0291	0.0229	0.0243	0.034	0.029	7020
(10.8)VI374		CI×1				6.8970									0.0242	
(10,14) V1377		CTxu				15,668								-0.70		
(10.27.26.25) VI 383 /r	383 /			-0.051	0	-0.587										
F10.17V1390			voff	0:8330	930											
(10.32)VI389	7	CuBy CuBy	tuin		}	-0.536	6 -0.536	6 -0.538	8 -0.539	6.5		-0.544 - 0.547	-0.550	-0.554	-0.558	-0.562
(10.28) VI 386	'n	CúB.	single		,	-0.265 -0.269			9 -0.269	9 -0.270	1-0.27	-0.272 -0.273			-0.279	
F10.18V1391	Ţ	CuBveff	•	inter 2.0682	682 2.0083		Ŋ							i i		
(10.105) VI 442	7	CÝda														
10.123)VI461	7	CYdr				0.3383		8 0.339	0.3395 0.3406	5 0.3419	0.3435		0.3454 0.3475	0.3499	0.3524	0.3552
(10.50) \text{VI417}	/r	afij				0.2290	0 0.1712	2 0.0458			-0.034	4-0.041	-0.046			
=	7	<u>a</u>		 ਹ	:. 52	-0.040	0.040	0-0.040		0.041	0.041	1-0.041	-0.041	-0.041	0.042	
=	7	<u>9</u>		 ਹ	 ت	- 000	90.00	0-0.000	00.00	0000	9.000	0000-0	90.00	90.0	-0.000	90.00
(10.80) VI 428	7	5				-0.281	11 0.3205	5 0.3613	3 0.3653	3 0.3661	0.3669	9 0.3682	0.3699		0.3745	
VII4	**	D(rag)		2158.	8.1											
F10.3VI375		₩ 5 /00				-128.8	8 -67.88		2 -0.736	5 -0.214		-0.080 -0.035	5-0.017	-0.009	-0.005	6-0.003
(8.81)VI324		dC∎/dQL	×	Kcg(furd)		-0.093		2 -0.090	0 - 0.087		-0.02	9 -0.073		-0.057	-0.047	
=		dCa/dCL		Xcg(aft)		-0.003	3 -0.002	2 -0.000	0 0.0023	3 0.0061	0.0108	3 0.0167		0.0321	0.0424	
(8.109) VI 342		(dCN/da)pi		ı												
(5.46)one265	L	dde/dCL	must be neg.	neg.		-0.195	5 -0.191	1 -0.186	5 -0.176	-0.178 -0.167		5 -0.14	-0.155 -0.140 -0.122 -0.103 -0.082	-0.103	-0.082	-0.057
(5.106)one295	L	ddedn	must be neg.	neg-		-167.	-167.1' -82.93	3 -55.10	0-41.22	2 -32.89	1-27.3	4 -23.36	-27.34 -23.36 -20.37 -18.04 -16.16	-18.04	-16.16	
VI346,230,447	d,r	d(elev, flap, aile)	olie, de	30 0.5235						ස ස	darigh=	£- 13		<	is +	
(8.45)VI272		de/da	-		0.3		0.3523 0.3544 0.3579	4 0.357		0.3630 0.3696		2 0.3887	0.3782 0.3887 0.4017 0.4173 0.4363	0.4173	0.4363	0.4593
#	₽ 1 0	de/da			0.4		0 0.4185	5 0.4226		0.4286 0.4365		0.4466 0.4590	0.4743	0.4743 0.4928	0.5152	
		•														

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	ICH NUMBE	R DEPENDENT	PARAMET	ERS													
Reference	Unit	Variable	Given	Measu (Compu	N =0	Æ.05	₩.10	Æ.15	M=.20	N=.25	.30 1.30) №.35	S 7.40	± 45	15 M=, 50	30 M=.55
F8.115V1327 F8.115V1327	യ(1)	de[-]/da (de[-]/da)i=1 "2	i=1	ത്ക്ക്	1	1.1172											
(8.87)VI326	cu(2)	.s "4 "5 (de[-]/da)i=6 "?	1 .	ച് ⊷് ന്	1.2333 1 1.4095 1 3.0244 0				0.2768			0.2654				32 0.2324 10 0.0774	
		B 6 0 1 2 2							0.0116 0.0348 0.0580 0.0813 0.1045				1 0.0108 4 0.0326 5 0.0544 9 0.0761 2 0.0979		05 0.0102 17 0.0306 28 0.0510 40 0.0714 52 0.0918	02 0.0097 06 0.0292 10 0.0487 14 0.0682	
F12.511286 F10.9VI384	ft in, ft	Def, Deg, Dg, Ohl, On Of	, Ohl, On	6.1	1.026	0.1254 U 1.1	1.52	1.8	U. 12/8	U. 1264	U. 124r	0.1223	o U.1197	r 0.1163	23 U.1122	22 U. 1U/3	3 0. 1013
15.1982 (8.86)VI326 990	± #	00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	9.18	r ·	7.10	2 0	0 75.853 3	302.00	305.00 692.33 1246.2	1246.2		1979.0 2907.6	5 4054.7	7 5449.	.8 7131	.2 9148.	5449.8 7131.2 9148.7 11566.
(10.31)V1389 F8.126V1338 V95 V1377	in,ft #/s	(1+ds1gaa/dB)nv dt (dMF/dt)T0 1 dX[-]acA/dM	dB)rrv 1.2	i 6		11.206 -	-0.023 -	-0.039	-0.039 -0.056	-0.074	-0.09	-0.11	7 -0.14	12 -0.16	55 -0.2	JZ -0.2	-0.074 -0.094 -0.117 -0.142 -0.165 -0.207 -0.249 -0.292
(5, 45)VII142 (4, 12)VI27 VI69 T7, 11V322	⊵ ⊊	e eh Electic	incomplete 0.75	8	16.816	J	0.8318 (0.8332	0.8356	0.8389	0.843	0.8356 0.8389 0.8433 0.8487 0.8551	7 0.85		27 0.87	13 0.881	0.8627
V1271 FS. 22V1131 F2. 22IV31 V11134	i Sg d	f F f g	21 326	•	271												
(5. 2) IV287 IV287	#/hr	fiu Fuel flow max Fuel pump max	l flow max pump max flow		6360 9540		-										
									,								

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	H NUMBE	R DEPENDENT	PARAME	TERS													
Reference	Unit	Variable	6i ven	Measu	Compu	N=0	M=.05	M=.10	Æ.15	M=.20	M=.25	₩ .30	# =.35	M=.40	M=. 45	M=.50	7.55
Overall Operating Mater line Leading edge Gravity F10.7VI382 VII162 (5.11)VI1121 F10.28VI399 Ceilings (5.21)VII127 F10.28VI399 VI135 V76 V76 V77 F8.66VI274 VI1164 T5.1VII119 F10.28VI399	######################################	F.S.c.g. aft F.S.c.g. aft M.L.c.g. aft M.L.c.g. low F.S.L.E.mgc gamma gamma gamma h A5757. h1,h2,(h1/h2)^.5 h6 h h h h h h h h h h h h h h h h h h	aft aft low low 10.1 0.1 5000 5000 500 500	aft 409.49 foru aft 409.49 foru low 83.548 high 174 dihedra 0.1 0.2451 6.9166 bso servi combat 57. 43180. 30291. ^.5 6.92 5 000 86 7.1666 60 5 11 50		forw 397.61 forw 397.61 high 95.095 ihedra 0 .2451 ombat cruise 0291. 37331. 5 1.1764 .1666	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	397.61 397.61 83.548									
(6.140) one 442 slug. sqflxxs Izzs Ixzs	slug. sc	flxxs Izzs Ixzs K	.	_	0.0428	- 1- W	65136. 79323. 30127.	55695. 88764. -26165	42469. 101990 -8501.	41286. 103173 -714.5	41418. 103041 2937.6	41670. 102789 4908.7	41883. 102576 6089.2	42046. 102413 6852.0	42169. 102290 7373.9	42232. 102227 7624.5	42255. 102204 7716.5
(10.54)v1419 F8.13V1228 F(8.111)v1319 F10.47v1448		k(wing) k' k2-k1 Ka		0.62		0.8662 0.8673 0.8706 0.8762 0.8841	9.8673	0.8706	0.8762	0.8841	0.8947 0.9081	0.9081	0.9247	0.9247 0.9452 0.9700 1.0003	0.9700	1.0003	1.0372
(11.5)11264 (8.46)V1272 V272 V1272	5 2	Ka KR KR*Klambda*Kh KR*Klambda*Kh			0.0966	_	0.6770	0.6774	0.6780	0.6790	0.6803	0.6819	0.6770 0.6774 0.6780 0.6790 0.6803 0.6819 0.6840 0.6866 0.6899 0.6940 0.6992	0.6866	0.6899	0.6940	0.6992
(7.31,32)v105 F8.52v1260 V95,110,108,87,93 F10.22v1394 V77 press,main,cargo	, 93	Kapi 887 212 Kb(rudder) 0.5 Kb, Kbc, Kbuf, Kd, Kec(n-a, after) Kf(wing, H. tail) 0.94 0.8 Kf	### 887 ### 1.08 1.08	212 0.5 c(m-a, af 0.94 1.07	(ter.)	1.3	0.316	1.02	1	0.686	1.08						

Table C.3 NGCH NINGER DEPENDENT PROPERTIES	N WREI	P DEPENDENT	PAPPAME	TEPS.													
				1	c	2		ģ				9	Č	9	ţ	; ;	į.
Keterence	Unit	Variable	61 ven	1	Measu Compu		₩.05	요. 발	M=.15	æ.₩	M=.25	£.33	∓.35	분. 유.	₽.4	n=.50	N=. 55
V99, 100	100/4	Kfc, Kfcf	0.64	138													
V75,82	7₽ĥ / *	Kf(tailboom),Kgr		-	-												
(8.48)VI272		Kh, Kh(hh=0)	_	0.9406 1.08	1.0817												
V74 (10.54)V1419		Kh k(h.tail)	-			988	7.9200	1. 9737) 6566 (3888	i mms 1	015K	. N343	1 1521 1	1849	0.9888 0.9700 0.9737 0.9799 0.9888 1.0006 1.0156 1.0343 1.0571 1.0849 1.1187 1.1601	1601
F10.8VI384		Ki.			1.1666			5					2	3	2		
V77		Kinl	buried	1.25		else											, "
(8.47)\1272		Klambda	,		1.3214												
V108,87		Klav,Km	0.31	-			•	;	•	;			;	!	!	1	
10.25413%		KMgamma(wing)	(ng)				 •	1.0I		3:5	53.	1.028		S	1.07	 8	1.1
F10,21VI394		KMJamhda(uino)	tail) ind)			-			1 005	5 5	CD-1	3 2	3 5	1.03	 - - -		7.0.1
		Kalambda(H.tail)	Ltail)			•	-	•	-	: -	-	1.08	1.02	1.025	2.5	50	1.07
F10.28VI399		×.		0.0024			•	•	•	•	•	:	!			3	
82A	d√ ;	쥰	0.37	0.24 radi	radi,hori	· ,											
۷%,84		Kosc, Kp	0.0	⊕													
(10.54) VI 419		. بد	•			-	1.0012	1.0050	1.0114	1.0206	1.0327	1.0482	1.0675	1.0910	1.1197	1.0012 1.0050 1.0114 1.0206 1.0327 1.0482 1.0675 1.0910 1.1197 1.1547 1.1973	1.1973
(6.4,6)484		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.4 4.5	9													
V89, 30		kpropi,2	₹	0.108			3	1 7	-	1 04	-	6	-	1 007	2 023	9	2005
V109	**	K 21	100				7.	-	?	5	}	7:17	: :	2:1	٠.	3	2.023
V85		Kthr	-														
F10.12VI385		<u>₹</u>	,	0.9907		0.9907	0	0									
V24,71		₹ 3.		-	ŗ												
(3, 21, 14, 14, 14, 14, 14, 14, 14, 14, 14, 1		2 3			1.1674	96.88) מעצא ני	י לבלף נ) 9949 n	9888	0 9688 0 9700 0 9737 0 9799 0 9888 1 0006 1 0156 1 0343 1 0571	7510	1 0343	0571	1 0849	1 1949 1 1197 1 1601	1 1501
F10, 16V1390		; ∑			1.0157	3	3	5		3		961	2			7.110	3
F10.40VI427		3		0.8027	0.8027 conditio.8027 0.8027	0.8027	3.8027										
(8, 44) VI 272		Κυ Γ			1.0006												
F2. 22IV31	Ę,		tricy.config. 238.	onfig.	238.61												
F4. 4VI26		۔	1.2														
F12.511286	£	Ξ.	•	2.5													· · ·
VII119		Jampda	-			!	-	1		!							
(10.106) V1446	v v	LHMBDA B(wing)	Jing) (Lei I)			12.5	. 2.515 0	12.560 n	12.638	12.749 n	12.8%	3.083	13.314	13.598	13.941	12.5 12.515 12.560 12.638 12.749 12.896 13.083 13.314 13.598 13.941 14.358 14.866	14.866
Fus. finess.rat.		lambda f			8.9166		•	>	>	5	>	>	>	-	>	>	>

Table C.3 MAC	H NUMBE	MACH NUMBER DEPENDENT PARAMETERS	PARAME	TERS													
Reference	Unit	Variable	Given	Measu	ndwoj	₩	M=.05	M=.10	M=.15	M=.20	M=.25	₩.30	₩=.35	₹. .	M=. 45	M=,50	M=.55
F4.2V124 d F4.2V124 b W87 in, ft V11133 V11133 V11133 V11133 (3.10)V120 Fusel. length in, ft, V1319 V76 F10.28V1399 Gas gen lengt ft V1274, V77 in, ft F2.141V19 in F12.511286 ft V105 F2.141V19 in F12.511286 in, ft V105 V81 in, ft	. -	lambda(t/o cos(lambda Ld L/D (L/D)cr(ui (L/D)max (L/D)max (L/D)max 1f,1f/f,1f 1f/df 1f-n 1f/df 1f n 1n 1n 1n 1n 1n 1n 1n 1n 1n 1n 1n 1n 1n	Se), (L/I Se), (L/I /bh /bh /c.g) (1/4)	8.5 cr1 cr1 480 400 0.51 2 2 2 2 2 3 3 3 3 5 5 3 3 3 5 5 3 3 6 5 3 3 6 5 3 3 6 5 3 3 6 5 3 3 6 5 3 6 5 3 6 5 3 6 5 5 5 5	8.5 0.9890 20 1.6666 1.6721 6.3915 12.0 14.949 14.882 535 44.583 0.5283 1.5462 8.9166 480 40 9.3683 0.3 400 33.333 1.51 2 72 6 72 6 8.6 8.6 8.6 8.9 1.6721 6.3915 12.0 1.6721 6.3915 12.0 1.4.882 1.51 2 2 2 1.51 1.51 1.5	ERR 1.5283 1.72 72 72 72	5462 xv in	6.3915	12.061 p266	14.949	14.255	12.014	9.7168	1.6721 6.3915 12.061 14.949 14.255 12.014 9.7168 7.8221 6.3544 5.2312 4.3664 1.5462 xv in F11.4IIp266	6.3544	5.2312	4.3664
Mach	chus.	9 X			1221.3	0	0.03	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55
F2. 221V31 V1394 F2. 2110 V104 (2. 13) 116, V69 Load factor F2. 221V31 V11164 F8. 97V1303 V94, 90 V108, 109 V103, 108 T2. 181V54	in in in the	M Mcos(lambd Mcos(lambd Mcr MD Mff,MH n n na.c. Nbl Nc,Ncr Ne,Nfdc rg	tricycle confi 20.51 a c/4) b c/2) 0.3634 0.4808 0.8500 1 tricycle confi250.49 0.1 2 6 blades 0 4	ycle confi 1 1 1 ycle confi 1 2 0 1 2	i 20.51 0 0.3634 0.8500 0.5292 i250.49 8 7.5833	1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0488	0.0976	0.1464	0.1952	0.2470	0.2928	0.3461	0.0	0.450	0.4945	0.5369

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	H NUMBE	R DEPENDEN	T PARAME	TERS													
Reference	Unit	Variable	Given	Measu	Compu	0 ±0	M=.05	M=.10	M=.15	M=.20	M=.25 N=.30		M=,35	M=, 40	₩.45	M=, 50	₩.55
Fire retardant (8.41)VI271		US galNgal rh.tail npylon	2000 prop				1.01	1.01	1.01	1.0	1.01	1.01	1.01	1.01	1.01	1.01	1.01
V1442 V87.80		ni,no(aile) Ninl	e) 2	0.548 0.982	0.982		•	•	•	•	•	•	•	•	•	•	•
14.1039		nlim+,-	7.33	က္													
F8,97VI303	in, ft	nagc No Maay	,	. 58°	58 4.8333 Used if A)5	33 Used if A>5	85 (1)										
12.2114		np(cr, ltr)	9.0) 6.0	4	3											-
V103, 108		Npil, Nrou	 (0													
12.171054		ns.nt	0.8	0.47													
091,109		Nt, Ntroop		0													
V70,81	•	nult, nult. 1		10.995	5.7												
080	psi	2 4	3 R	8													
F10, 18VI391	1 P	5 [4	12.23	12													
RIBA	2	Paax	12000	!													-
Vp(ix), 76	in, ft	Deax		240	20												
F2.22IV31	**	PMsmax, PNsmax	SMax	18258.	4721.6												
(5.8)/11119	2	Preqd, ar			1379.2												
(5.66) VIII 53	2	Preod, maneu	Da Da		20631.												
(5.61)VII152	r/s	psif. 11			J	0.5536											
	، وج	PIU	12000														
VIIII9, 1102 hp/sq	hp/sqf	PIU/NUP~2		0.48%	89,669	1000	í										
(4.2)VI21	#/saf	o[-]				5 O	7032	4.812 3	3.328 5	9.251.9	2.580 1	33,31	81.45.7	37,00.2	0 3,7032 14,812 33,328 59,251 92,590 133,31 181,45 237,00 299,96 370 32 448 08	20 32 4	48 R
W61,78	psf	q(-10,L		-	648.18												}
one413	*	q[-]5				(7)	3295.8 1	3183. 2	9662. 5	2733. 8	123%. 1	18650 1	61497 2	10935 2	3295.8 13183. 2%62. 52733. 823%. 118650 161497 210935 266964 329586 398799	29586 3	98799
Reynolds wing		œ				0	₩	8E+06	1E+07	2E+07	2E+0 2	2E+07	36.407	3E+07	€ +02	Æ+07	Æ+0 7
(5.34)VIII34		o∡ 5	Š		1190.7												
VIII37	e :	K1 2-1 2-1/E	₹ ;	'n	2 0 2003												
(5.21,23)VIII26	6 for	RC 24.7		3 6.2333 7773.1 6497.4	6497.4		-										
Rates of climb					servi combat cruise	ruise											
T5. 2VI 1129	đ đ	<u>ج</u> ج	0	8	200	0 8											-
(5.37)V11133		KC1			1.9237												

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	H NUMBE	R DEPENDENT	PARAMETI	83													
Reference	Unit	Variable	Given	Heasu	Сомри	뫄	N=.05	M=. 10	M=.15	M=.20	Æ.25	Æ. 30	M=.35	M=.40	₩.4	# :.50	M=.55
V104 T1.1red11 s F4.1V124	n.m. R(cr slug/ft3 rbo RNfu	(- য	625 0.0023	·		0	2£+07	3€+07	£+07	£+05	8E+0?	26+07	1E+08	1E+08	1E+08	25+08	2£+08
F4.2VI24	đ		Regr	ŕ		.0679	_	1.0679	1.0679	1.0679	-	.0793	1.0908	1.1023	1.1137	1.1252	1.1366
F4.1V124	-	Ruf Fuf		- (figure	-:	1.05	-	0.95	2	0.93	2.8	0.95	0.977	0.987	0.995	1.005
(5.82)VII162	£,	sAIR		- ;	1057.2												
F10.28V1399 T586E16JRNES #	\$9f */h/sho	SBs sfc	2) 0.53	212.16													
	bs 0	Sfgs, Sfgs boom, Sff	boom, Sff		85	900	0										
(5.80)VII162 VII144	# #	sfl ^Sflans	•	8	619.4												
(2.39)\(1144	\$				145.55												
VI271	sqf	(Sh)slip	₩.	42.263													
1,4000		5h/5v			1.3333												
(5.81)VIII62	#	Signa S		~	2171.6												
(5.88) \$11164	#	sl6		,	1114.4												•
11264		<u>.</u>	T	-0.073													
V1383, 385	\$ \$			19.6													
661	\$		2														-
(5.6,14)VIII17,122 ft	, 122 ft				1350.9 1401.0	401.0											
	₽ ,			91	670.08												
(12 5)11205	5 3	Suetbooms	£ 1.5	<i>r</i>) +	539.12							-					
00711/0171	7 \$	Swetcow 1101	- 1.1.5. - 1.1.5.1.	•	ERR ERR												
(12.6)11285	ᄷ	Swet. Basgen/E	m/E	-	1.0499												
•	şď,	Swet. Gasgen. Total	an.Total	•	ER												
,	<u>ķ</u> ,	Swet. Pylon		0	1												
nacel IUI	\$	Swet. Nacelle	.	C	K K K												
	हें ह	Supt 4(1 AII-3)	¥ [ກີ	8.85 25.75												
	ģ	Suet Wing Fairing	fairing	, 4-4	18.472	Swet to	Swet total with:	ä									
	ģ	Swet intersections	-sections		9	PU-58 4	GPU-5A 4(LAU-3)										
Tot wet area	ğ	Swet101		(1)		3428.4 3428.4	1428.4										
(5.4)VIII13	** :	- 1		(17)	33486.			1		1		!	;	,			
(5.28)(11131	-	-					-17213	28439.	4671.4	3102.7	-17213 28439. 4671.4 3102.7 3022.4 3457.6 4186.7 5132.8 6262.6 7575.3 9061.5	3457.6	4186.7	5132.8	6262.6	7575.3	9061.5
				i													

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	CH NUMBE	? DEPENDENT	PARAME	TERS													
Reference	Uhit	Variable	Given	Measu	ეთი	Ŧ	N=.05	严.10	M=.15	# =.20	Æ.25	M=.30) № .35	5 元.40	0 11 145	5 H=.50) N=.55
(5.7,8)VIII19 # (5.38)VIII35 s, ain VGB (552-415 (5.28)VIII31 d,r VIII31 d,r VIII31 d,r VIII33 d,r VIII35 d,r Cruise d,r VIII35 d,r Cruise d,r Cruise d,r VIII35 d,r Cruise d,r	s, ain tcl 652-415 (t/c. d,r thete d,r thete d,s?2 thete d,s?2 thete fps tree fps ug kts, fps ug kts, fps ug kts, fps ver	TE-1, TE-1, tcl (t/c)max tcl (t/c)max Tcruise ThetaI THO (TI-1/M)T((T/M)cr(uise) UI	11.15 1.15 1.15 1.15 1.15	38.594 viscosi viscosi 337.6 337.6 337.6 337.6 337.6 337.5 590.8 5	15415. 0.6432 0.6432 0.6432 15415. 0.0321 250 250 250 250 250 250 250 250	22776. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88.058 .058	76.116	55.82 111.64 167.46 223.28 38.058 76.116 114.17 152.23	152.23	279.1	334.92 228.34		390.74 446.56 502.38 266.40 304.46 342.52	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	380.58	558.2 614.02 380.58 418.63

Table C.3 MACH N	NUMBE	NACH NUMBER DEPENDENT PARAMETERS	PARAME	TERS													
Reference Un	Unit	Variable	6iven	Measu	Compu	M =0	M=.05	M=.10	M=.15	M=.20	M=, 25	⊮ =.30	M=.35	M:.40	₩.45	M=.50	M=, 55
12.1112 F2.2110		W(i+1)/Wi W4/W3 W5/W4	0.992 0.9870 0.9870	W2/W1 0.99 climb	W3/W2 0.996	N3/N2 W11/W10N12/W11 0.996 0.99 0.99	112/W11 0.99	·									
Rir induc.sys V87,88 # Na: Rir-cond, press, anti-deic	nti d	Mai(+Np) Pic	(6.8) (7.26)	(6.9) (6.9) (7.27)	(610) 39.285 (7.28)	(ave) 63.304 (7.29) (7.30)	(7.31)	(7.32)	(7.33)	(346)						
V104 # Wap Acc,powr.contr,start,ign V95 # Wap	# ta+	Wapi ign Wapsi	178.92 (6.34a) 86.4	178.92 2.5 205.09 (6.34a)(6.34b) (ave) 86.4 629.11	205.09	0	0	0	180.37	0 0 180.37 161.98	-						
(7.40)V107	***	Mapu Maux	0.006		237.04												
Bag.carg.handl.equip V110	quip #		(7.48) 0.316	(7.49)	(9/6)												
12.16148 usg	***	Wccap/Waetal	le;	0.85													
V104	• •		20509														
Engine V84.85	**	<u>o</u>	(6.2)	(6.2) 2007	(ave) 2200												
(2.16)118	*	WE<1,2>.>>25176.	25176	21400.													
Eng.cont V93,94	**	Wec	(6.23)n(6.23)y(6. 24.037 37.842 116	i(6.23)y 37.842	£ %	(6.25) 22.504	(6.26)	(ave)									
Elec, hydrau, pneu. sys	sys.		(7.12)	(7.13)	(7.14)	(7.15)		(7.17)	(7.18)	(7.17) (7.18) (7.19) (7.20)	(7.20)	(ave)					
V101,102 Emperado	•	Wels+Whos	1058.8	542.37	1165.2	1477.9 9	915.03	0	337.25	0 337.25 266.40 441.58		478.58					
V71,73	# :	Weap		1131.6													
VII142 RIRR		Menotoparbox	ğ	1100 U84	25 26 26 26 26 26 26 26 26 26 26 26 26 26												
714	**	Weng. inst.	8)												
Eng. start. sys	4		(6.27)	(6.28)	(6.23)	(6.29) (6.30) ((6.31)	(ave)									
(2, 5)17	.	Mess Liftont	778-17	3.37	14812	38.039	72.348										
4	* ** *	We+Wai+Worop+Wp		503		;	•										
15)116	2 **			7407.6	7407.6	16.673 <- 34 ff 7407.6 10200 given	iven										
Fuse1 V75-77	**	4	(5.23) 6.2596	(5.24)	(5.25)		5.26)e	(5.27)p	(5.27)	(5.27)c	(5.28)b	(5.28)e	(ave)				
											3.000.		7.1007				

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	NUMBE	R DEPENDENT	PARAME	TERS													
Reference	Unit	Variable	Given	Measu	Сомри	M=0	M=.05	M=.10	M=.15	M=.20	M=.25	№ .30	M=.35	M=.40	M=.45	N=.50	N=.55
(5.27)477,75	**	WF(/tailboom)	(W OC		599.86												
Flight cont.sys	#	11ور	(7.2)	(7.3) 1782 8	۶. کر 4. کر 2. کر	(7.5)	(7.6) 25.33.	(7.2) (7.3) (7.4) (7.5) (7.6) (7.7) (7.8) (7.9) (7.10) (ave) (7.2) (7.3) (7.10) (ave) (7.2) (7.3) (7.4) (7.4) (7.4)	(7.8) 23.240.1	(7.9) (7.10	(ave)					
72 13 WIN	. *	Heren	5	0.30	70 . 89	1.0001	7	7 0.00	7.7.	100.	1000						•
(6.26) 992		f PJ			22.414												
(5.22) 75	**	Wffl.boat mono		3934.0	1979.5	3934.0 1979.5 (2 floats)	,s)										
VI399, V76	in, ft	ufmax		82	6.5												
75	in, ft	wfmax(tailboom)	(Pood)	ĸ	6.25	6.25 IVp125(bf)	. ()										
116	~:	Fres		0.25 of WFused	•	•	;			į							
Fuel sys vgn-g2	*	≥J∏	(6.15)	(6.16) (6.1 291 65 639	(6.17)	(6.18)	(6.19) . 326.46.	(6.16) (6.17) (6.18) (6.19) (6.20) (6.21) (6.23) (6.24) 791 65 639 80 234 11 326 46 365 33 208 02 530 88 211 82	6.21) (6.23) (-	(ave) 1045 1					
(5,41)VIII37	* **	11	2	3	680.01	3	2	3	3	3							
Furnish			(7.41)	(7.42)	(7.43)	(7.44)	(7,45)	(7.42) (7.43) (7.44) (7.45) (7.46) (7.47)		(ave)							
V107-109	**	Wfur	72.891	18	15	103.03	2661.9	15 103.03 2661.9 113.65 153.96	53.96								
(2.14)116	**	MFused															
Land. gear				(2.33)	(5.40)	(5.41)	(5.42)₽	(5.41) (5.42)a(5.42)n(5.43)		(ave)							
V81,82	#	5 4	665.66	1218.7	586.35	1364.8	974.75	974.75 180.13 1461.2 1079.7	461.2 1	7.620							
H.tail				(5.14)		(5.19)	(ave)										
V71-74	#	垂	1542.5	525.74 676.48		841.42	758.95										
7101	**	Mhydrau			395.08												
(7.23) 103	**	=======================================			506.76												
Instr, avio, electro	tro		(7.21)	(7.22)	(7.21) (7.22) (7.24)	(7.25)	(9/6)										
V103, 104	#	Wiae	æ	356.06	33 356.06 397.04 717.92		540.57										
VII142	*	Winitial			39508												
(6. 25)492	**into	Mint Iret	ď		214.66	101											
	* 0 *	HINO F	. y		32100.	vpo1											
Nacelle	•	i :	(5.29)r	(5.29)h	(5.30)	(2.31)	(5,32)	(5.29)r(5.29)h(5.30) (5.31) (5.32) (5.34) (5.35) (5.35)	5.34) (5.35) (5.36) ((5.37)	(aye)				
N78-80	**	걘	4440	2880	2880 273.86	3840	3840 5651.8	1680	1680 169.68 420.54 847.87 1002.0	20.54	347.87	1002.0					
(2.4)17	*	WOEtent			15410.												
	*				22												
	ZMT0, #	Mpaint	0.3		118.52												
Prop. contr	*	-	(6.32) (6.33)	(6.33)	(9/6)												
74,73 (59	• •	<u></u>	202.44 231.74	231.74	16690	9201652	Ifenoria	16690 A2UIn521/encition injuly factor)	the fact	٤							
Prop	•	ı B	(aiven)	(aiven)(6,13) (6,14)	(6.14)	(ave)	redest	110	2	`							
06,684	**	Morop	250	250 2031.3	2027.6	220											

Table C.3 MACH NUMBER DEPENDENT PARAMETERS	H NUMBE	R DEPENDENT	F PARAMET	ERS													
Reference	Unit	Variable	Given	Measu	Compu	Œ.	M=.05	M=. 10	M=.15	M=.20	M=.25	M=,30	M=.35	M=.40	₩.45	M=.50	M=.55
VIII23 VIII26	d4/#	(W/P)climb (W/P)TO			15	,											
Powerplant V83.85	**	Hour	(6.1) 3689.5	(6.4) 5572	(6.6) 7560	(ave)											
(6.5) 485	* **	Msprch		-	1505.4												
VII123	psf	(W/S)T0		V	44.391	STO needs to be evaluated	ls to be	evalu)ted								
(6.22)492	-	Msupp		æ	52.778												
144	fps	ָּבָר : בּרַ	7,	•													
Ir Take-off	*.*	MCF 0	C.0	-	39508												
(6.36)495	*	냝			366												
V.tail			(5.13)	(5.15)		(5.20)f(5.20)f (ave)	5.20)f	(ave)									
V71-74	-	≟			21	•	110.15	382.43									
Wing	:	:	(2.2)	(2.3)			(2.6)		(5.9) (5.10)		(ave)						
V60-70	**	3	3279.4 2184.2 6704.5	2184.2 (6.	٠. ا	6065.3	3948.9 7133.0		6960.8 8203.1		7656.9						
2)060	••	Mu+(due to complex flaps696.	o comple:	k flapst		•											
964	**	Mui, Mutr			0	。 `						į	7				
(8.82)VI324	;	x[-]acH				- `	0.5603					0.5458	0.5400	0.5328	U. 5246	0.5142	
	ب	xacA				'								5.8618	5.7709	5.6567	5.5195
	.E.	xacA	;	;	•	`			73.547		72.683	72.058		70.342	69.251	67.881	_
(11.1)11261	χ. 4 γ.	x[-]acB	₹ 8	SF/1	_	F,X[-]al.0278					1.0265	0.3279		0.3243		0.3195	
[611.231126]	7 5 5 6		≅ <u>₹</u>			. •		0.4104			1.035 200.1	U. 4033		U. 3363			
	ر اران 4		3 5			. •		6,4833				0.4730		0.4543	1.0001		17001
•	; ج		<u>3</u> 8			•	CIII.1	U. 3363	1.1935			0.0432		0.3303		0.0118	- •
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 2	3 8				1.1334	0.6237	1.1369	0.0183	1.1327	0.5002 0.0002	1.1202	0.3328	1.1158	0,525	1.1035
	2017		2 6 2					0.0003			1.1322	7295		0.0320		0.0207	
	Ŕ	=	3 5			. •		200			1 2123	7862		7.45		7328	. –
(8,85)V1326	Ī	^x[-]acf	fuselade	O.		•					-0.029	4.028					
		^x[-]acb	booms			•	-0.001			-0.001	-0.001		-0.001	-0.001	-0.001	-0.001	
	in,ft,	xach, x[-lach, xacv, x[-lacv	ach, xacv	,x[-]ac	>	438	36.5	3.3181	401	33.416	3.0378						
Pylons F8. 97V1303	ft, in, ft, ft	xacp,x[-lacp : xacw	37	0.0000 0.0000 3.0833 3.1666	0.0000 3.1666												
	•			_	0.2803		-										
(8.83)VI324		x[-]acuf				- •				0.2484	0.2484	0.2485	0.2486	0.2487	0.2493	0.2494	0.2496
F10.44V1433 F8.114V1323	f,	xt-j/ct-j xcg,x[-]cg(aft,forw,case)	g(aft, fo	ru, case		6.1241	0.5567	0.0024 5.1343	0.4667	-0.002 5.1343	-0.00b 0.4667	۳.010	-6.010 -6.016 -0.023 -0.03 <i>2</i>	-0.023	-0.U32	-0.042	 50.9-

	55	
	M =.55	
	M=.50	
	₩.45	
	₩.40	
	Æ.35	
	№. 30	
	₩.25	
	₩. 20	
		y v
	₩=.15	Same as lv in F10.27VIp396 Def. in Table of symbols -110 -9.166
	₩.10	D. 27A
		6 of File
	M=.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0=#	Me as ly in f. in Table -110 -9.166
		7215 4.75 1048 4667 282 Same as lv in F10.27VIp3 1056 Def. in Table of symbols 7.5 3333 -110 -9.166
	Compu	24.5 32.17 0.7215 7.833 14.75 39.048 0.4667 339.38 28.282 9 -2.051 0 5 110 9.1666 [7.5 0.75 10 0.8333
		24.5 32.17 0.7 7.8333 14 0.4 339.38 28.4 5 110 9.1 10 0.8
TERS	Measu	24.5 32.17 7.8333 7.8333 110 0 0.75 0.75
ACHARE	Given	
E P		xh xm,xm/lf x(m,n or t)g xo xc xv xv zw zh zh zr zv zv zw(wing, H. tail)
	Variable	xh xm,xm/lf x(m,n or t)g xo xv xv zv zh zh zv zv zv(wing, H. ta
	Vari	
	Unit	یے یے ہے
N C E	돌	यस्य द्रम्म द्रम्म द्रम्म द्र
£ €	Ci.	83.57 83.85 83 85 85 85 85 85 85 85 85 85 85 85 85 85
Table C.3 MACH NUMBER DEPENDENT PARAMETERS	Reference	F8.116V1327 F10.28V1399 F2.5V1139 F10.11V1385 F11.411266 F10.39V1426 F2.5V1139 No.237,170 V73 F2.5V1139 F2.5V1139 F2.5V1139 F10.2V1396 F10.2V1396
[de]	Refe	F8.1 F10. F10. F11. F2.5 F2.5 F10. F10.

Table C.4.1 L	ONGITUE	JINAL AND	LATERAL-DIRECT TAKE-OFF AT S	LONGITUDINAL AND LATERAL-DIRECTIONAL DIMENSIONAL STABILITY DERIVATIVES FLIGHT CONDITION: TAKE-OFF AT SEALEVEL, WEIGHT = 39,508 LBS, M = 0.15	
Reference	Unit	Variable Given	Given Measu	F.05 F.10 F.15 F.20 F.25 F.30 F.35 F.40 F.45	M=.50 N=.55 N=.60
Mach M x a	fps 6+7-	z > 0	37 174	0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 55.82 111.64 167.46 223.28 279.1 334.92 390.74 446.56 502.38 55	0.5 0.55 0.6 558.2 614.02 669.84
(B5) one 538	g's/rad	y 1 n/a thotal		0.9571 1.6863 3.5675 6.3460 10.050 14.760 20.595 27.711 36.317 46.	46.685 59.179 74.283
(B4)one538	98	T2P		-13.55 3.8680 41.829 -599.3 -110.8 -76.83 -62.25 -53.29 -46.90 -41.99	.99 -38.02 -34.77
(6.141) one 446		H.	(xz/Ixx)	-0.469 -0.200 -0.017 0.0709 0.1178 0.1453 0.1629 0.1748	0.1805 0.1826 0.1831
T6.8one445	(\$/	E E	s(zz[/zx])	0.3798 -0.294 -0.083 -0.006 0.0285 0.0477 0.0593 0.0669 0.0720 0.0	0.0745 0.0755 0.0757
=	/\$2	5		4.4310 13.242 24.657 39.326 57.988 81.435 110.68 147.11	2 25
3	/s2	2 6		-1.079 -0.852 0.0183 1.1758 2.5853 4.2536 6.1915 8.4100	13.268
= 3	s ,	ا و		-3.364 -5.941 -8.182 -10.53 -13.14 -15.64 -18.47 -21.70	-30.47
T6 3000413	s (s)	<u> </u>		6.2310 6.7005 7.2210	8.2881
=	, v	Ma(.)		-0.303 -0.463 -0.634 -0.819 -1.025 -1.257 -1.524 -1.836	-10.12 -9.463 -6.914
z	/52	꾳		-0.761 -1.727 -3.107 -4.928 -7.230 -10.06 -13.49 -17.60	-28.32
= =	, s	ᅙ		-2.981 -3.555 -4.168 -4.831	-6.351
: =	75/	e i			
: =	/17/5 / 1 7/5	⊋ ₽		0.0073 -0.006 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.	-0.000 -0.000 -0.000
T6.80ne445	/52	: 是		1.6336 3.6562 6.4815 10.094 14.577 19.920 26.064 33.079	49,973
=	/\$2	₩		-0.743 -0.659 -0.671 -0.697 -0.732 -0.777 -0.833 -0.905	-1.064
=	/s2	ž		-1.267 -2.798 -4.972 -7.796 -11.27 -15.49 -20.28 -25.85	-39.20
= :	s ,	₽:		-0.393 -0.242 -0.112 0.0357 0.2128 0.4229 0.6667 0.9436	1.5718
:	S	<u>+</u>		-0.204 -0.465 -0.764 -1.024 -1.282 -1.542 -1.805 -2.073 -2.347 -2.	-2.624 -2.909 -3.199
= (2)	/85	# £			
(61/3/Jone438	M	I Rift - NEI - 'SO	.×.	0.1683 U.1222 U.0949 U.0760 U.0639 U.0541 U.0460	0.0328
(3.25)VI189	w	12)	121	163 -0 053 -0 053
(6, 161) one 454	v	15		-0.175 -0.154 -0.140 -0.127 -0.116 -0.107 -0.098	
(3.26)VI189	r/s	Quit		5.7661	7.0875

Table C.4.1	LONGITUD	LONGITUDINAL AND LATERAL-D		ECT10	F2. D19	RECTIONAL DINENSIONAL		BILITY	STABILITY DERIVATIVES	IVES						
			_	- YEA	rvel.	ni sencevel, M ejuni	1		39,508 LBS, M = U.15							
Reference	Unit	Variable	Given	Measu	Æ.05	M=.10	M=. 15	M=.20	1年.25	.±.30	.±.35	6.4	₩.	M=.50	# .55	M=.60
VI1297	r/s	MnD2et3D				0.2611	0.4248	0.5692	0.7126	0.8570	1.0032	1.1527	1.3046	1.4587	1.6169	1.7781
(3.9)41178	17/5	<u>류</u>	(6,112)one430		0.0487	0.0489	0.0492	0.04%	0.0502						_	
(3.11)////78	r/s	h S.P.		0	0.6501 1	1.0530	1.5566	2.0690							5.3988	
16.3one413	ft/s2	Š		==	18.088 1	18.011	17.880									
•	ft/s2	芝		ī	-1.830 -		-1.875				-					
2	/s	ΧIα		Ö	0.2511 -	-0.207	-0.022									
2	/2	₹		٣	-0.3530	0.5658	0.0558	0.0030								
=	s/	X[-]n		٣	-0.1020		0.0331	-0.002								-0.039
T6.8one445	ft/s2	9		7	-1.576 -	-6.315	-14.23	-25.38	-39.80		5 -78.73	-103.4				
±	=	₩Q₽			0	0	0	0	0		0	0				
a	=	χοχ		ö	0.9082 3	3.6377	8.2031	14.628	22.945	33.197	45.432	59.705	76.077	94.609	115.36	138,38
*	ft/s	ζ		o.	0.4646	0.6947	0.2788	-0.004	1-0.225	-0.415						
=	-	,		٣	-0.571 1	1.3007	2.1992	2.9649		-						
T6.3one413	ft/s2	29		Ϋ́			-114.7	-204.1								-2389.
=	ft/s	2a[.]		7	-0.381 -	-0.771	-1.178	-1.611	-2.082	2.605	5 -3.195	-3.873	-4.667	-5.613		
Ξ.	ft/s2	3 q€		٣	-0.466 -	-1.873	4.251	-7.645	1-12.12	2-17.79	1 -24.76		-43.32			
(3.27)VI189		Zeta D			ER O		0.2216	0.2230	0.2237				-			
(3.10)01178		Zeta P	(6.113)one430				-0.336									0.3315
(3.12)VII78		Zeta 5.P.		0	8		0.8272	0.8330	0.8556		5 0.9055	0.9412	0.9853	1.0440	1.1215	
T6.3one413	ft/s	5 d		7	. 286	-2.543	-3.845	-5.183	-6.571	-8.025	5-9.563	-11.20	-12.97	-14.90	-17.01	-19.36
=	/2	Zn	į	٣	-0.004	-0.008	-0.012	-0.017	-0.021	-0.02	-0.032	-0.038				-0.075
							•									
							•									
		-														

Table C.4.2 L	CNG TU	LONGITUDINAL AND LATERAL-DI	1 02	RECTIONAL STABILITY DERIVATIVES 1 (M = 0.40) AND LOITER (M = 0.25) FOR [W = 39,508 #, h = 5,000 ft]	STABILITY DERIVATIVES 40) AND LOTTER (M = 0	RIVATIVER CM =	ES 0.25) FI	DR CI	39,508	# u	5,000 f	£1			
Reference	Unit	Variable Given	Given Measu	M=.05	M=.10 M	M=.15 M=	M=.20 N=	M=.25 M=	M=.30 M=.35	35 №.40	40 元.45	45 M.50	50 11.55	35 №.60	.60
Mach M × a	fps	x > 0	921 CE	0.05 0.1 0.15 0.2 0.25 0.3 0.35 54.855 109.71 164.56 219.42 274.27 329.13 383.98	0.1 (). 15 4. 56 219	0.2 0	22 329	0.3 0. .13 383.	35 0 38 438.	0.4 0.45 438.84 493.69	45 69 548.	0.5 0.55 0.6 548.55 603.40 658.26	55 0 40 658.	0.6
538 ng le	g's/rad n/a d,r the	d n/a thetai	0 0	1.0083 1.4561 2.9920 5.2936 8.3711 12.288 17.141 23.062 30.221 38.848 49.244 61.812) -87 50 -1 406 33 152 217 04 -153 2 -95 41 -75 16 -63 64 -55 24 -40 27 -46 00 -41 11	4561 2.9	9920 5.2	936 8.3	711 12.	288 17.1	41 23.0	62 30.2	21 38.8	38.848 49.244 61.812	4 61.8	812
(6.141)cmo446) •	! a	(154/155)	00000		, ,		, ,							1 2
		. &	S (XXI/XXI) (Ixz/Izz) s	0.0846	-0.363 -0.0	-0.272 -0. -0.117 -0.	-0.055 0.0408 -0.026 0.0163		0.0378 0.1314 0.0395 0.0534	34 0.0625	27	672 U.1746 87 U.0719	45 0.1773 19 0.0734	79 0.1794 34 0.0741	<u> </u>
T6.8one445	/52	8		-2.911 -	-0.657 -1				-8.767 -11.98	98 -15.73					8
2 2	/52	5 5							48.395 67.947						8
=	/s/ /s/	<u>¥</u> _		-2.854 -7.854	- 629 - 7 - 629 - 7	-1.003 -0. 4.965 -6.	-0.316 0.6533 -6.941 -8.956		1.8382 3.2382 -11.17 -13.28	82 4.8621 28 -15 68	21 6. 7193 68 -18 41	93 8.6921 41 -21 23	21 10.783	33 13.037 33 -31 05) S
3	/s	- 5							5.2740 5.5698						27.
T6.3one413	/52	₩ 9								28 -6.958	58 -7.982	82 -8.422		74 -5.753	33
ž ,	/2	Ma[.]										55 -1.870	70 -2.252	52 -2.724	724
2 :	/52	뿔							016						.31
t r	N (₽ £		-0.397 -	T- 88 -1	-1.207 -1.	-1.628 -2.065	?	524 -3.010	10 -3.529	29 -4.091	91 -4.703	ŀ.	377 -6.127	127
=	/ f }/«			D 0121 J	ר- מ <i>א</i> ט ר-	טיי טטט טיי	000 0- 000 0-		ייטט טייט טייט טייט						٤
=	/ft/s														36
T6.8one445	/s2						5.3959 8.4025								8
•	/52	Œ,			O-608.O-	-0.666 -0.	-0.669 -0.692	692 -0.							134
•	/s2	SE SE						4879.	-9.385 -12.84	84 -16.88	88 -21.51	51 -26.75			13
	/2	£						885 0.1			13 0.7874	74 1.0448		19 1.6173	173
* :	s/	¥		-0.214 -0	J. 366 -0	-0.643 -0.	-0.867 -1.087		-1.307 -1.529	29 -1.757	57 -1.988				5
- (£	/52	8 2 2			0	,		•				:			
(6.173/one438	N		5	U. 1273 U.	35	2014 U. 1	44U U.1	116 U.U	895 U.U.	52 0.06	37 0.05	43 0.0	60 0.03		
(3,25)V[189	v	15. 15. 15.	2	185 0 3131 -0	75	¥ 19	2 2 2 2	2 9	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5 5 7	50 0- 050 0- 050 0- 050 0- 050 0- 050 0- 050 0-	5 5 5 5	710 50 0- 57	70 PG	<u> </u>
(6.161)one454	ហ	<u> 5</u>		0.4517 -0	-0.225 -0	197 -0.	173 -0.	158 -0.	-0.197 -0.173 -0.158 -0.144 -0.132 -0.172 -0.113 -0.105	32 -0.1	22 - 22	13 -0-1	15 - 10 037		7 6
(3, 26) VI 189	r/s	7		ERR 1.	1.1594 1.	1.7482 2.3276 2.9047	276 2.9	047 3.4	3.4904 4.0802 4.6674 5.2582 5.8527	02 4.66	74 5.25	82 5.8	27 6.4631		<u>`</u>

Table C.4.2	LONG I TUD FLIGHT C	ONDITIONS	LONGITUDINAL AND LATERAL-DIR FLIGHT CONDITIONS: CRUISE #1	ECTIONAL STABILITY DERIVATIVES (M = 0.40) AND LOITER (M = 0.	STRB1	ONAL STABILITY DERIVA = 0.40) AND LOITER (M	ERIVAT ER (M	1WES = 0.25)	F.	(K = 39	39, 508 #,		5,000 ft.1				
Reference	Unit	Variable	Given Me	asu M≃.	#=.05 #=	M=.10 M	H=, 15	M=.20	Æ.25	₩.30	# =.35	₩.#	₩.45	5 N=.50	0 11:55	5 №.60	8
VII297 (3.9)VII78 (3.11)VII78 16.3one413 16.3one413 16.3one413 16.3one413	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	who be to be	(6.112)one	99844964 99686		855 2 4 5 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6	0.3577 0. 0.0501 0. 1.3817 1. 17.880 17 -1.871 -1. 0.0708 0. 0.0708 0. 0.0418 0. -11.84 2. -96.26 -1 -96.26 -1 -0.2046 0. 0.7907 0. 0.7907 0. 0.7907 0.	4820 0505 0505 0505 0124 0112 0112 0136 0136 0136 0136 0136 0136 0136 0136	0.6040 0.0511 2.2851 17.447 -1.960 -0.009 -0.009 -0.127 3.1478 -1.763 -1.763 -1.763 -0.009 0.0884 0.0187 0.01887 -5.564	0.7264 0.0518 17.133 17	0.8502 0.0527 3.1764 16.746 16.746 0.007 0.010 0.0174 0.0831 0.1747 0.0831 0.093	0.0538 0.0538 13.5954 13.5954 16.275 16.275 16.275 16.275 16.275 16.075 16.095 16.005	1.1053 1.1053 1.0050 1.5.706 1.5.706 1.5.706 1.0.024 1.0.0308 1.2.52 1.0.508 1.0.508 1.0.508 1.0.508 1.0.508 1.0.508	11.2357 11.2357 12.0268 15.023 15.023 15.023 16.009	7 1.36% 8 0.0587 9 4.6899 9 4.6899 9 1.010 9 -0.010 9 -0.010 1 0.010 1 0.2119 1 0.2119 2 -57.99 1 0.2119 1 0.2119 2 -154.4 1 0.2119 1 0.2119 2 -1.0934 1 0.2119	6 1.5061 6 1.5061 7 0.0611 9 4.9260 9 4.9260 10 -2.671 0 -0.022 0 -0.033 1.078 1.15.15 9 -72.12 9 0.2127 9 0.2127 1 1.2051 1 -16.40 4 -0.076	1919e121386.0.382812989

Table C.4.3 L(ONG I TUC	LONGITUDINAL AND LATERAL-DIF FLIGHT CONDITION: CRUISE #2		RECTIONAL STABILITY DERIVATIVES (M = 0.4, W = 20,932 #, h = 5,000 ft	STABILITY DERIVATIVES W = 20,932 #, h = 5,	ATIVES h = 5,00)0 ft							
Reference	Unit	Variable	Given Measu	M=.05	M=.10 M=.15	5 M=.20	M=.25	M=.30	M=.35	₩.40	M=.45	M=.50	M=.55	N=.60
Mach M x a	fps	E D 0	P21 6E	0.05 0.1 0.15 0.2 0.25 54.855 109.71 164.56 219.42 274.27	0.1 0.15 0.71 164.56	5 219.42	0.25	0.3 0.35 0.4 329.13 383.98 438.84	0.35	0.4	0.45	0.5 0.55 548.55 603.40	0.55	0.6 658.26
538 ng le 538	g's/rad d,r sec	y in/a thetal T2P	0 0	0.9677 2.5148 5.5438 9.9335 15.763 23.168 32.335 43.514 57.031 73.316 92.939 116.66 -62.44 4.5551 102.47 -98.71 -57.85 -45.13 -37.88 -32.88 -29.12 -26.16 -23.73 -21.73	148 5.543E	3 9.935	15.763	23.168 :	32.335 4 -37.88 -	32.88 -	57.031	73.316	92.939	116.66
(6.141)one446		æ :	s(xx[/zx])	-0.005 -0.482			0.0821	0.1215						0.1722
16.8one445	/52	18 18	5(ZZI/ZXI)	-0.260 -0.864			0.0277 -6.506	0.0413 -9.375				0.0598 -26.23	0.0597 -31.47	0.0592
	/s2 /s2	5 6		0.4475 4.5312 -0 226 -0 564	312 12.067 564 -0 108	7 22.097 3 0 6846	35,235	52.054 7	73.234 9 4 4374 6	99.678 1	132.63	174.00	226.40 12.405	293.72
=	/3/	و أ		-1.247 -3.196	196 -5.403	3 -7.416	-9.581		-14.30			-23.52		-33.67
T6_3000413	s (s)	يع تـ		2.5823 3.7023 -0 040 -0 155	023 3,8878 155 -0 323	3 4.0243	4,3107	4.6973	5.1469 5 -0 329 0	5.6389 6	6.1617 (6.6823	7.1998	7.7217
*	5	Ma[.]					-0.733	J. 992				-2.139		-3.115
• :	/55	竖:				3 -2.956	-4.689	-6.879				-21.41		-33.51
	/s/	Mq MTa		-0.48 -0.900	300 -1.361	1.836	-2.329	-2.846	-3.393	- 3.979 -	-4.611 -	-5.301	9.060	-6.904
= :	/ft/s						-0.000				-0.000			-0.000
TC 0000445	/ft/s	2 9		0.0007 0.0001		0.000	-0.001 2017			-0.002	- 7005 - 7005 - 7005		93 90 90 90 90 90 90 90 90 90 90 90 90 90	6.04 5.04
	78/	2 S		-0.901 -0.328	233 2.6733 328 -0,316	5 -0.326	-0.34	19.79 19.89 19.89	-0.387 -	18.303 4 -0.420 -	-0.462		35.22 -0.22 -0.548	43.488 - 29.29
=	/52	¥ ₩					-5.703			-14.81	-18.87		-28.62	-34.33
=	/3	2					0.0649	0.1933	0.3487 0		0.7390			1.4779
• =	ار رير	₹ 4		-0.016 -0.373	373 -0.560) -0.742	-0.927	-1.114	-1.304 -	-1.498	-1.695 -	-1.896	-2.102	-2.312
(6, 173) one 458	ž .n	<u>ال</u> ا ع		0.8015 0.3	0.3128 0.1850 0.1348 0.1043 0.0833 0.0698 0.0590 0.0502	0.1348	0.1043	0.0833 (0.0698	.0590		0.0425 0.0352		0.02%
(3.24)VI188		LBN-NBLr>0	주	yes no	٤	ğ	2	2	n ou	2		2		2
(3.25)VI189	ın	125		0.6835 -0.	-0.239 -0.204 -0.179	4-0.179	-0.159	-0.159 -0.142 -0.128 -0.117 -0.107 -0.098	-0.128 -	0.117	-0.107	-0.038	-0.089	-0.082
(6, 161) one 454	N.	15		0.9861 - 0.345	345 -0.2%	-0.295 -0.258 -0.230 -0.206 -0.185 -0.168 -0.154 -0.141	-0.230	-0.206	-0.185 -	0.168	-0.154	-0.141		-0.118
(3, 26) VI 189	r/s	Qu <u>t</u>		ERR 1.1	1.1109 1.6412	1.6412 2.1804 2.7187		3.2657 3.8167 4.3653	3.8167 4	. 3653	4.9174 5.4731		6.0441	6.6210

Table C.4.3	LONGITUD FLIGHT C	INAL PND I	LONGITUDINAL AND LATERAL-DIRECT) FLIGHT CONDITION: CRUISE #2 (M :	RECTIONAL ST (M = 0.4, W	STABILITY DERIVATIVES W = 20,932 #, h = 5,	DERIVAI 32 #, h	: 5,000 ft) ft							
Reference	Unit	Variable	Given Measu	M=.05	M=.10	M=, 15	N=.20	M=, 25	M=.30	M=.35	M=.40	M=.45	M=.50	N=, 55	N=.60
V11297 (3.9)V1178 (3.11)V1178 16.30ne413 16.30ne413 (3.27)V1189 (3.12)V1178 16.30ne413	1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5	whozetab Who P Who S.P. Xa	(6.112)one430	ERR 0.0496 0.5432 18.088 -2.476 0.231 -0.023 -31.13 -0.594 -0.732 -31.13 -0.732 -0.732 -0.732 -1.1667 -1.660	0.2318 0.0498 0.9056 18.011 18.011 18.011 0.3623 0.363 0.363 0.5678 2.2227 -9.918 0.5678 0.5678 0.5678 1.202 -2.943 0.2086 -3.336 -0.008	0.3484 0.0501 1.3413 117.880 117.880 117.880 117.880 117.880 117.880 10.0237 -0.015 -22.36 -22.36 -178.3 -1	0.4623 (0.0505) (1.7826) 17.694 (17.694) 17.694 (17.694) 17.694 (17.694) 17.694 (17.694) 17.694 (17.696) 17.695 (17.696) 17.69	0.576 0.0511 2.2256 17.47 17.47 17.47 -0.013 -0.013 -0.023 -0.582 -5.758	0.6945 0.0518 2.6583 17.133 17.133 17.133 17.133 -0.019 0.030 -0.030 -0.030 -0.030 -0.030 1.1480 -0.027 -0.027	0.8130 0.0527 3.0862 16.746 -2.999 -0.012 -0.023 -1.090 8.1131 -1.090 0.2130 0.2130 0.3467 1.1860 -12.60 -0.033	0.9342 0.0538 3.5011 16.275 -3.193 -0.014 0.042 -1.329 9.3189 9.3189 -1.400. -52.15 0.2140 0.3913 1.2346 -1.2346	1.0573 9.9026 15.706 -3.427 -0.015 -0.031 -0.031 -0.047 -1.563 10.546 -1.563 10.546 -1.276 -68.04 0.2150 0.2150 0.2150	1.1824 0.0568 4.2642 15.023 -3.644 -0.017 -0.035 -0.035 -1.773 11.800 -2358. -8.751 -8.751 -8.751 -9.74 -0.055	1.3108 0.0587 4.5713 14.202 -3.831 -0.018 -0.058 -0.058 -0.058 -13.2 -1.964 13.081 -2.290. -109.4 0.2168 0.4866 -22.59	1.4416 0.0611 4.8016 13.213 -4.000 -0.020 -0.043 -0.063 -375.5 14.386 -375.5 14.386 -375.7 16.1 0 0 217.34 -2.147 11.386 -136.1 0.2177 0.2177 11.6371 -25.76 -0.076
-															
						•									

Table C.4.4 L	ONGITUD LIGHT C	INPL PND ONDITION:	LONGITUDINAL AND LATERAL-DIRECTIONAL FLIGHT CONDITION: DASH-IN (M = 0.55,		STABILITY DERIVATIVES W = 39,508 #, h = 1,000 ft)	Y DERIVE 38 #, h	111VES = 1,000	ft)							
Reference	Unit	Variable Given	Given Measu	u M=.05	5 M=.10	M=, 15	#.29	M=, 25	M≃.30	₩.3	₩.4	₩.45	₩.50	M=,55	₩.60
o.	fps ft/s2 g's/rad d,r		32.174	0.05 55.63 0.9646	0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 55.63 111.26 166.89 222.52 278.15 333.78 389.41 445.04 500.67 556.3 611.93 667.56 0.9646 1.6367 3.4452 6.1228 9.6942 14.236 19.863 26.726 35.025 45.024 57.073 71.640	0.15 166.89 3.4452	0.2 222.52 6.1228	0.25 278.15 9.6942	0.3 333.78 14.236	0.35 389.41 19.863	0.4 0.45 445.04 500.67 26.726 35.025	0.45 500.67 35.025	0.5 556.3 45.024	0.5 0.55 0.6 556.3 611.93 667.56 15.024 57.073 71.640	0.6 667.56 71.640
(84)one538	Sec	₹.		-14.0	-14.05 4.1438 39.758	33.738	-942.1	-117.4	-80.08	-942.1 -117.4 -80.06 -64.57 -55.17 -48.52 -43.41	-55.17	-48.52		-39.31	-35.93
(6.141)one446		E 6	([xz/[xx])	0.4741	1 -0.472	-0.214	-0.026	0.0654	0.1141	0.1428	0.1611	0.1734 0.1794		0.1817	0.1825
T6.80ne445	152		21771	-1.744		-2.348	-4.419	-6.997		-13.81		-23.05			-40.12
	/52	5		0.9928		12.715	23.773	37.946	55,957	78.578	106.79	141.93			313.67
1 #	/s/ /s	و څ		-6.783 -5.105	5 -1.063 5 -3.218	- - - - - - - - - - - - - - - - - - -	-U.U52 -7.922	1.0633 -10.20	2.42/3	4.0387 -15.14	5.9100 -17.88	8.0518 -21.00	10.328 -24.80	12. 741 -29. 49	15.342
	//s	د.		9.1976		5.3919	5.3310	5.4430	5.7143	6.0912	6.5390		7.5473	8.0640	8.5939
T6. 3one413	/52	₽:		-0.157		-1.394				-6.639	-8.065		-9.762	-9.126	-6.668
	s/	Maf.]		6.145		-0.48	-0.613	-0.733				-1.777			-3.113
	/52	¥ ;		-0.182	٠, د	-1.666	-2.996	-4.753	-6.973						-33.97
•	/s /s2	E E		 474	4 -0.912	-1. 88.1-	-1.89 1	7.3€	7.883	-3.44D	-4. U34	-4.b7	-5.373	-6.1 4 6	-/- WU2
	/ft/s	JE.		0.0078	3 -0.007	-0.000	-0.000	-0.000	-0.000	-0.000	0.00	-0.000	0.000	0.000	-0.000
=	/ft/s	₹		0.0012		0.0002	-0.000	-0.000	-0.000	-0.001	-0.001		-0.002		-0.003
T6.8one445	/52	92		-0.567		3.5265	6.2514	9,7359		19.212	25.138		39.522	48.196	57.827
= 1	/52	또 호		-0.767		-0.660	-0.670	-0.6%	-0.731	6.73	-0.830	-0.301		-1.058	-1.155
B 	/52	X X		0.3011				-7.518	-10.87	-14.88			-31.01	-37.81	-45.36
	ر _ع	₽		0.1054					0.2022	0.4060			1.2036	1.5192	1.8558
= 1	<u>s</u> ,	<u>+</u>		-0.211	1 -0.45	-0.739	-0.991	-1.241	-1.492	-1.747	-2.002	-2.271	-2.539	-2.815	-3.096
(12.7)	72/	8 2 8		i c	6000		,	9	7000	0		į	9		
(6.17370ne438	n	HENCHAR TOO	0,1	U.1938	3 U.31U?	0.174Z	0.1742 0.1262 0.0380 0.0783 0.0860 0.0559 0.0475 0.0403 0.0339	0.038E	0.U/85	0.000 0.0000	U.U559	0.0475 	0.0403	0.0339	0.0281
(3, 25) VI 189	v	2	2	0.2498	3 -0.144	-0.144 -0.124 -0.109 -0.099 -0.090 -0.082 -0.076 -0.070 -0.065 -0.059	-0.109	-0.09	-0.090	-0.082	-0.076	-020	-0.065	-0.059	- P
(6, 161) one 454	Ŋ	₹		0.360	0.3604 -0.208 -0.179 -0.158 -0.143 -0.130 -0.119 -0.110 -0.101 -0.094 -0.086	-0.179	-0.158	-0.143	-0.130	-0.119	-0.110	-0.101	0.094	-0.086	-0.079
(3.26)VII89	r/s	<u>4</u>		ERR	R 1.2568	1.8821	1.8821 2.5059	3.1275	3,7583	3.7583 4.3935 5.0259 5.6622 6.3024 6.9598	5.0259	5.6622	6.3024	6.9598	7.6237
						-						-			

Table C.4.4	LONGITUE Flight (LONGITUDINAL AND LATERAL-DIRECTIONAL FLIGHT CONDITION: DRSH-IN (M = 0.55,	LATERAL-O OASH-IN	IRECTIONAL (M = 0.55,		481L1TY : 39,50	STABILITY DERIVATIVES W = 39,508 #, h = 1,0	39,508 #, h = 1,000 ft)	. £							
Reference	Unit	Variable	Given	Measu	M=.05	№.10	M=. 15	№.20	N=.25	M=.30	#=.35	五.4	₩.42	7.50	M=.55	₩=.60
VII297 (3.9)VII78 (3.11)VII78 16.30ne413 16.30ne413 (3.27)VII89 (3.10)VII78 (3.10)VII78 (3.10)VII78	7/5 7/5 6t/52 6t/52 6t/53 6t/52 6t/52 6t/52 6t/52 6t/52 6t/52 6t/52	Who Detail Who P. Was S.P. Was Xill Xill Xill Xill Xill Xill Xill Xil	(6.112)one430		ERR 0.0489 0.6413 18.088 118.088 11.088 11.250 11.520 0.3941 0.3941 0.3941 0.399 11.0069 0.9023 11.0069 0.9023 11.255 0.004	0.2502 1.0292 18.011 -1.846 -0.254 0.3345 -6.090 0.3345 -6.090 0.7024 1.2421 1.2421 1.2421 1.2421 0.7024 0.7024 0.7024 0.1990 0.1990 0.1990	0.4108 1.5201 17.880 -1.875 -0.023 0.0586 0.0348 -13.73 0.2923 2.1252 -110.8 -1.140 -4.099 0.2182 0.2182 -0.352 0.8200	0.5509 0.0498 2.0199 17.694 -1.915 -0.001 0.0100 0.0126 2.8691 -1.559 -1.559 -1.559 0.0147 0.0147	0.6897 2.5195 17.447 -1.969 -0.003 -0.001 -0.011 -38.38 -0.204 -2.129 -2.129 -2.129 -2.129 -2.015 -11.69 0.2205 0.2205 -0.001	0.8295 0.0511 17.133 -2.039 -0.008 -0.009 -0.017 -55.51 0 32.016 -0.390 -2.521 -17.15 0.2207 0.2207 0.1692 0.8703	0.9710 0.0520 16.746 16.746 16.746 0.002 0.002 0.2063 0.2063 0.2063 0.2063 0.2063 0.2063 0.2063	1.1156 0.0531 16.275 16.275 16.275 -0.009 -0.025 -0.025 -0.720 -0	0.2229 0.2229 0.2229 0.2229 0.2229 0.2229 0.2229 0.2229 0.2229 0.2229 0.2229 0.2229	1.4118 0.0560 1.6023 -2.490 -0.010 -0.021 -1.011 7.3535 -1.48 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -5.431 -6.031	1.5648 0.0573 14.202 -2.608 -0.011 0.023 111.25 -1.134 8.1494 -1.136 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51	1.7208 0.0603 13.213 13.213 13.213 13.213 13.213 13.46 1.253 1.253 1.253 1.2215 1.2215
		3	`		_ 1	l l	. 1				70.0	l l				

Table C.4.5	LOVETTU FLIGHT (LONGITUDINAL AND LATERAL-D FLIGHT CONDITION: MANEUVER	! =	RECTIONAL STABILITY DERIVATIVE (W = 30,220 #, n = 5, h = 1,000 ft, M = 0.35)	VE 000 ft, M = 0.	35)					
Reference	Unit	Variable	Given Measu	M=.05 M=.10 M=.15	1E.20 1E.25 N	1E.30 NE.35	₩.4	五.6. 元	#.53. #	N=.55 N=.60	8
Mach M × a gravity (B5)one538 Pitch angle (B4)one538	fps U ft/s2 g g's/rad n/a d,r the	M U g d n/a thetal T2P	32.174	0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.55 0.6 55.63 0.1 0.15 0.52 0.6 55.63 0.1 0.15 0.5 0.5 0.6 55.63 111.26 166.89 222.52 278.15 333.78 389.41 445.04 500.67 556.3 611.93 667.56 11.853 4.7833 5.6756 8.6610 13.091 18.900 26.178 35.099 45.914 58.962 74.696 93.727 -6.374 0.2184 -14.97 -3.231 -3.300 -3.662 -4.075 -4.485 -4.875 -5.220 -5.523 -5.789	0.2 0.25 2.52 278.15 33 6610 13.091 18 1.231 -3.300 -3	0.3 0.35 3.78 389.41 5.900 26.178	0.4 445.04 5 35.099 4	0.45 000.67 5E 5.914 58. 4.872 -5.	0.5 0.55 556.3 611.93 8.962 74.696 5.220 -5.523	0.55 0.6 11.93 667.56 4.69 93.727 5.523 -5.789	0.6 .56 727 789
(6.141)one446 T6.8one445	52 52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(xz/ xx)s (xz/ zz)s	0.2401 -0.486 -0.172 -0 0.4810 -0.246 -0.065 -0 -5.215 -10.13 -13.92 -1 0.5969 4.7740 13.372 24 -0.288 -0.844 -0.437 0. -44.87 -14.06 -9.827 -9 23.055 23.226 20.195 16 -0.106 -0.421 -0.924 -1 -0.154 -0.313 -0.478 -0 -0.194 -0.783 -1.776 -3	-0.002 0.0774 00.001 0.0285 016.30 -19.03 -2 24.645 39.295 58 0.4451 1.5918 29.848 -11.40 -1 16.692 14.614 13 -1.581 -2.335 -3 -0.654 -0.845 -1 -3.194 -5.067 -7	0.1202 0.1456 0.0446 0.0544 -22.31 -26.27 58.002 81.537 2.9907 4.6504 -13.67 -16.02 13.48 12.832 -3.102 -3.758 -7.433 -10.34 -3.051 -3.639	0.1618 0.0607 -31.01 110.91 6.5812 -18.78 12.566 -4.119 -1.572 -13.87	0.1729 0.1 0.0650 0.0 -36.32 -4 147.51 195 8.7935 11. -21.38 -25 12.539 12. -3.973 -2. -1.895 -2. -18.10 -25 -4.945 -5.	0.1775 0.1 0.0669 0.0 -42.17 -48 193.45 251 11.147 13. 12.661 12. -2.279 -2. -2.279 -2.	0.1784 0.1780 0.0672 0.0671 -48.40 -55.08 251.64 326.41 13.645 16.338 -30.76 -36.96 12.894 13.223 -0.049 5.1078 -2.744 -3.319 -29.11 -36.21 -6.500 -7.406	57.1 57.1 57.1 57.1 57.2 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3
T6.8one445	/ft/s /82 /82 /82 /82 /82 /82 /82 /82 /82 /82			0.1629 -0.120 -0.032 -0 0.0073 0.0057 0.0050 0. -0.483 1.5064 3.3070 5. -5.784 -2.926 -2.712 -2 0.2071 -1.156 -2.535 -4 0.0693 -0.296 -0.178 -0 -0.068 -0.446 -0.690 -0	-0.018 -0.013 -0 0.0045 0.0042 0. 5.8441 9.0901 13 -2.749 -2.828 -2 -4.497 -7.044 -1 -0.070 0.0588 0. -0.917 -1.146 -1	-0.010 -0.008 0.0039 0.0037 13.118 17.921 -2.930 -3.057 -10.18 -13.93 0.2167 0.4061 -1.377 -1.611	-0.007 - 0.003 0 23.442 2 -3.216 - 18.31 - 0.6271 0 -1.851 -	-0.006 -0. 0.0036 0.1 29.746 36. -3.414 -3. -23.33 -29 0.8790 1.1	-0.006 -0.0037 0.036.846 443.648 -3.29.01 -3.29.343 -2.343 -2.343	-0.005 -0.005 0.0037 0.0042 44.933 53.913 -3.931 -4.285 -35.37 -42.43 1.4524 1.7703 -2.597 -2.857	25 28 3 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(6. 173) one 458 (3. 24) v1188 (3. 25) v1189 (6. 161) one 454 (3. 26) v1189	_	18 18N-NBLr>0 125 15 140	0<-	0.0222 0.0711 0.1017 0.1015 0.0876 0.0731 0.0623 0.0532 0.0454 0.0386 0.0325 0.0270 yes no	0.1017 0.1015 0.0876 0.0731 0.0623 0.0532 0.0454 no	0.0731 0.0623 no no -0.098 -0.087 -0.142 -0.126 3.6331 4.2464	0.0532 0 no n -0.079 - -0.114 - 4.8570 5	0.0623 0.0532 0.0454 0.0386 no no no no -0.087 -0.079 -0.072 -0.067 -0.126 -0.114 -0.105 -0.096 4.2464 4.8570 5.4715 6.0900	0.0386 0.0325 no no -0.067 -0.061 -0.096 -0.089 6.0900 6.7252	0.0386 0.0325 0.0270 no no no -0.067 -0.061 -0.056 -0.096 -0.089 -0.081 6.0900 6.7252 7.3669	270 270 056 056 369

Table C.4.5	LONG I TUC FLIGHT C	INAL AND	LONGITUDINAL AND LATERAL-DIRECTIONAL FLIGHT CONDITION: MANEUVER (W = 30,2	ECTIONAL STABILITY DERIVATIVE W = 30,220 #, n = 5, h = 1,00		/ DERIVATIVE 5, h = 1,000 ft, M =	t, M = (0.35)						
Reference	Uhit	Variable	Given Measu	1=.05 N=.10	0 N=.15	№.20	N=.25	N=.30	M=.35	₩.40	H=.45	M=.50	H=.55	₩.60
VII297 (3.9)VII78 (3.11)VII78 (3.27)VII89 (3.27)VII89 (3.12)VII78 (3.12)VII78	1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5	1	(6.112)one430 (6.113)one430 P.	0.258 0.109 0.103 0.058 0.053	100-011-11 -011-11	0.5306 0.1114 2.0116 88.470 -12.67 -0.777 0.3482 -0.429 -32.00 18.443 -0.134 -2.014 -2.014 -2.018 0.2188 1.9239 0.9632 -5.973	, <u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· ·		1.6545 0.1349 5.3243 66.069 -16.34 -0.212 -0.026 -0.239 -301.4 1.676 11.550 -3015. -109.2 0.2245 0.8873 1.4314 -22.44
						-								

Table C.4.6 LC	NG TTUD	INAL AND L	LONGITUDINAL AND LATERAL-DIRECTIONAL STABILITY DERIVATIVE FLIGHT CONDITION: DASH-OUT (W = 20,932 #, h = 1,000 ft, M	ECTIONAL STABILITY DERIVATIVE W = 20,932 #, h = 1,000 ft, M	#, h =	DERIVA 1,000 fi	- 11	0.55)							
Reference	Uhit	Variable	Given Measu	M=.05	M=.10	M=.15	₩.20	#.25	₩.30	I :.35	五.4	₩.45	M=.50	M=, 55	₩=.60
Mach M x a gravity (B5)one538 Pitch angle (B4)one538	fps ft/s2 g*s/rad d,r sec	M U 9 n/a thetal 12P	32.174	0.05 55.63 1.0134 44.842	0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.55 0.6 55.63 111.26 166.89 222.52 278.15 333.78 389.41 445.04 500.67 536.3 611.93 667.56 1.0134 2.8877 6.4133 11.506 18.265 26.849 37.475 50.432 66.098 84.973 107.71 135.21 44.842 5.3094 196.90 -76.28 -49.19 -39.08 -32.99 -28.70 -25.45 -22.87 -20.76 -19.01	0.15 166.89 2 6.4133	0.2 222.52 211.506 11.506 1	0.25 278.15 18.265	0.3 0.35 333.78 389.41 26.849 37.475 -39.08 -32.99	0.35 389.41 37.475	0.4 0.45 445.04 500.67 50.432 66.098 -28.70 -25.45	0.45 500.67 66.098 8	0.5 556.3 84.973	0.5 0.55 556.3 611.93 4.973 107.71 22.87 -20.76	0.6 667.56 135.21 -19.01
(6.141)one446		E 5	s(xz//zx])	-0.157	-0.423	-0.101	0.0357 (0.0930	0.1329		0.1659 (0.1765	0.1744
T6.8one445	/52	5 B 5	5/771 /7X1)				-4.804 ·			-14.77 -14.77	-19.38 -15.41	-24.64 -53.59	-30.30 -30.30	-36.35 25.35	-42.88
8 3	/87	3 -				0.0491 (0.9673			5.293					17.412
TC 2000413	, N (<u> </u>					4.3444	4.7151	5.1883		6.3037				8.7178
15.30ne413	s/ 7s/	Ma[.]		-0.047 -0.166	-0.180 -0.335	-0.374 -0.513	₩ ₽ ₽ ₽			-1.331	0.5069 -1.686	2.2134 :- -2.032 -	5.3471	10.590 -2.943	18.911 -3.560
	/s2 /s	ž e		-0.208 -0.512	-0.839	-1.905 - -1.556 -	-3.426 - -2.098 ·	-5.435 ·		-11.09	-14.88 -4.547	-19.41 ·			-38.84 -7.891
s #	/s2 /ft/s	E E		0.0041	-0.000	-0000		000		-0.000	000			-0.000	-0.00
T6 8000445	/ft/s	로 9								-0.002			9.6		6.8 9.8
***	127	£ ₹				-0.317	-0.328	-0.344	-0.366 -0.366	-0.394	-0.429	-0.474	4.474 -0.520	-0.567	-0.618
= 1	/52	왕 본					-4.219		-9,553	-13.06			-27.20		-39.79
	ν ×	₽₺		P. 96.	÷ ÷	-0.121 -0.639	-0.031 (0.0834	0.2286		0.6123 (-1 711	0.8495	1.1098 -2.155	1.3914 -2 402	1.6924
	/57	BEN 6						4						2	2
(6.173)0ne430 (3.24)VII88	'n		₽.	5	0.7809 0.2643 0.1614 0.1181 0.0913 0.0730 0.0612 0.0517 0.0439 0.0372 0.0312 0.0312 0.0439 0.0439 0.0412	0. lbl4 (0.1181 . 'n'	0.0313	0.0730 00	7.001Z	1. U. U.	U. U439 L	U.U372 m	0.0312	0.0259
(3,25) \(\) (3, 25) \(\)	Ŋ	125		28	.219	-0.186 -0.162 -0.144 -0.127 -0.114 -0.104	-0.162	6.14	-0.127	-0.114	0.104	6.09	980		-0.072
(6.161)one454	w	7			-0.316	-0.269 -0.234 -0.207 -0.184 -0.165 -0.150 -0.136	-0.234	-0.207	J. 184	-0.165	-0.150	-0.136	-0.125 -0.114	-0.114	-0.104
(3, 26) VI 189	r/s	3		0.3842	1.1932	1.7659	2.3473	2.9275	3.5168	4.1105	4.7015	5.2962	5.8949	6.5101	7.1315

Table C.4.6	LONGITUC FLIGHT C	ONDITION:	LONGITUDINAL AND LATERAL-DIRECTIO FLIGHT CONDITION: DASH-OUT (W = 2	RECTIONAL STABILITY DERIVATIVE (W = 20,932 #, h = 1,000 ft, M	11.11Y 0 h = 1,	ERIVATIV DOO ft,	E M = 0.55)	1 2							
Reference	Uhit	Variable	Biven Measu	M=.05 M	M=.10 M	M=.15 N=	ME.20 ME.	产.25 产	M=.30 M=	M=,35 W	严.40	₹.45	M=.50	M=.55	M=.60
VII297 (3.9)VII78 (3.11)VII78 16.3one413 16.3one413 (3.27)VII89 (3.12)VII78 (3.12)VII78 16.3one413	7.7	MD2etaD Mn P Mn S. P. Xa Xa Xa Xa Xa Xa Xa Xa Xa Ya Ya Ya Ya Ya Ya Ya Ya Ya Ya Ya Ya Ya	(6.112)one430	0.0569 0. 0.0489 0. 0.0489 0. 0.5894 1. 18.088 18. 12.477 -2. 0.2286 -0.197 0. 0.0309 0. 22.870 -1. 1.6532 6. 1.2521 0. 0.3822 2. -32.60 -9. -0.848 -3. 0.1483 0. -0.315 -2. 1.0726 1.	0.2658 0. 0.0491 0. 1.0199 1. 18.011 17 2.509 -2. -0.045 0. 0.3061 0. 0.2610 0. -11.49 -2. -2.5731 3. -2.5731 3. -2.5731 3. -2.5731 3. -2.5731 3. -2.656 0. -1.374 -2. -3.411 -7. 0.2227 0. -2.656 0. -1.0786 1. -3.813 -5.	0.3975 0.5276 0.0494 0.0498 1.5162 2.0186 17.880 17.694 -2.553 -2.640 -0.015 -0.011 0.0221 -0.006 0.0070 -0.018 -25.91 -46.20 0.0070 -0.018 -25.91 -46.20 -25.91 -25.91 -20.027 -0.406 3.9414 5.2558 -2.099 -2.871 -7.738 -13.91 0.2251 0.2247 -0.071 0.1822 -1.0901 1.1057 -5.767 -7.780 -0.012 -0.017	0.5276 0.6595 0.0498 0.0504 2.0186 2.5215 17.694 17.447 -2.640 -2.745 -0.011 -0.011 -0.011 -0.011 -0.018 -0.028 -46.20 -72.45 0 0 0 26.627 41.767 -0.406 -0.723 5.2558 6.575 -370.2 -587.6 -2.871 -3.711 -13.91 -22.07 0.1822 0.2793 1.1057 1.1266 -7.780 -9.874 -0.017 -0.021		· I	0.9286 1.1 0.0520 0.1 3.5201 4.1 16.746 16 16.746 16 16.746 16 16.746 16 16.746 16 16.746 16 14.3.3 -1 14.3.3 -1 17.285 10 17.285 1	1.0672 1 0.0531 0 1.0672 1 16.275 1 16.275 1 16.275 1 10.045 1 10.045 1 10.045 0 10.045	1.2080 1 0.0544 (4.4915 4.4915 4.4915 4.4915 4.4915 4.4915 4.4915 4.931 4.93 7 -0.054 -0.054 -0.054 -1.816 -1.816 -1.816 -78.86 -78.86 0.2280 (0.5001	1.3510 0.0560 4.9425 15.023 -0.019 -0.019 -0.019 -0.019 172.21 13.482 -297.9 -10.00 -10.00 -10.00 -10.00 -2733. -2733. -2733. -2733. -2733.	1.4978 0.0579 14.202 13.3515 14.202 14.202 10.045 10.045 14.946 1	1.6473 0.0603 0.0603 13.213 4.129 0.023 0.072 435.2 16.438 16.438 0.2309 0.6042 1.5735 1.5735
						•									

Table C.4.7 L	ONGITU	DINHE PND CONDITION:	LOWGITUDINAL AND LATERAL-DIRECTIONAL STABILITY DERIVATIVE FLIGHT CONDITION: LAWDING (W = 20,932 #, h = SEALEVEL, M	ECTIONAL STABILITY DERIVATIVE = 20,932 #, h = SEALEVEL, M = 0.15)	LITY DER	IVATIVE ÆL, M = (), 15)							
Reference	Unit	Variable	Given Measu	M=.05	M=.10 N=.15	15 N=.20	N=.25	N=.30	N=.35	₩.40	₩.45	M=.50	N=, 55	M=.60
Mach M x a	fps	E D	25. 55	0.05 55.82 111	0.1 0.15 1.64 167.46	0.05 0.1 0.15 0.2 55.82 111.64 167.46 223.28	0.25	0.3 0.35 0.4 0.45 334.92 390.74 446.56 502.38	0.35	0.4	0.45	0.5	0.5 0.55 0.6 558.2 614.02 669.84	0.6
graving (B5)one538 Pitch angle	g's/rad n/a d,r the	y d n/a thetal	0 0	1.0280 2.9886 6.6475 11.929 18.938 27.839 38.857 52.292 68.537 88.108 111.69 140.20 agos 5.577 357 357 88.108 111.69 140.20	886 6.64	2.9886 6.6475 11.929 18.938 27.839 38.857 52.292 68.537 88.108 111.69 55 577 57.757 357 88.108 111.69	18.938	27.839 :	38.857 5	22.292 6	8.537 8	38.108	111.69	140.20
200 (141)	}	: a	(104/100)		200 U- 626 U-	0 0 0001	1 292	0 1630 0	0 1221 0	0 1962 0	7 624 0	1981	0 1933	7101 0
05-F3071F1-0)		E 28	(1xz/1xz)s (1xz/1zz)s				0.0567	0.0669		0.0771 0			0.0802	0.0795
T6.8one445	/52	e :			-1.073 -2.586	86 -4.599	-7.174	-10.32	-14.08 -	-18.46	-23.47			-40.85
1 1	\$ E	5 2		-0.301 -0.	5.6527 13.623 -0.510 0.0855	23 24.014 55 0.9637	26.75 1844 1844	3,4559	5.0879 6.9898	110.02 1 6.9898 9	146.41 1 9.1711 1	11.496	13,965	324.41 16.628
=	/s	وز				69 -8.074	-10.39	-13.00	-15.51 -	-18.35	-21.59	-25.52	-30.37	-36.55
*	/s	ځ.				31 4.0930	4.4441	4.8961	5,4084 5	5.9606	6.5418 7	7.1178		8.2608
T6.3one413	152	€					-0.649	-0.636	-0.337 0		1.9580 4			16.729
	s (#a[.]			-0.2% -0.452	52 -0.618	第	-1.000		-1.487 -	-1.792 -			-3.138
: 3	7s /	ğ ş		- 184 - U	-0.742 -1.683	83 -3.031 27 -1.850	2.00	2,633	-3.816 - -3.419 -	13.10	-16.16 -4.646	-5.341	-6.106	-34.30
1	/52	E E					2							3
3	/ft/s			0.0036 -0.	-0.000 -0.000	000 -0 000	-0.000	-0.000	-0.000	-0.000	-0.000		-0.000	-0.000
=	/ft/s					000 -0.000	-0.001	-0.001	-0.002 -	-0.002 -	-0.002			-0.004
16.8one445	/s7	叟				14 6.2621	9.7527	14.085	19.248 2		31.959			57, 930
2 :	/52	F					-0.382 1	-0.407	-0.439 -	-0.479			-0.634	-0.691
	/25	¥ Ž					-2.586	-10.97 -15.02	-15.02	-19.74	-25.15	-31.28	-38, 14	-45.76
•	/2	£					0.0978	0.2637	0.4655 (1.9404
3	/2	¥		-0.073 -0.	-0.481 -0.728	28 -0.968	-1.210	 	-1.385	- - - - -	-2.220 -	-2.482	-2.753	-3.028
3	/52	NTB					;	1		1			1	
(6.173)one458	Ŋ	IR I	•	0.6878 0.2603 0.1675 0.1238 0.0961 0.0768 0.0644 0.0544 0.0463 0.0391 0.0329 0.0273	2603 0.16	75 0.1238	0.0961	0.0768	0.0644 (.034).0463 (0.0391	0.0329	0.0273
(3.24)VI188			.r>0	no no	2 ¢			_ 2	_ 2	20	2 6	20		100
(3.25)41189	Ŋ	12S		-C. 386 -C. 38	-0.179 -0.151	$\frac{1}{2}$ -0.131	-0.116 -0.103	-0.103	-0.092 -0.083 -0.076		-0.076	-0.069 -0.069		-C. 158
(6, 161) one 454		<u>.</u>		-0.557 -0.	-0.259 -0.2	-0.217 -0.189 -0.167 -0.148 -0.133 -0.120 -0.110 -0.100 -0.091	-0.167	-0.148	-0.133	0.120	-0.110	9 .0		-0.083
(3.26)VI189	r/s	2		0.4317 1	1.2663 1.8874	174 2.5134	3.1370	3.7701	4.4074	5.0418	5.6802	6.3225	6.9823	7.6486

Table C.4.7	LONGITUD FLIGHT C	ONDITION:	LONGITUDINAL AND LATERAL-DIRE FLIGHT CONDITION: LANDING (M	RECTIONAL W = 20,932	STABILI #, h =	RECTIONAL STABILITY DERIVATIVE W = 20,932 #, h = SEALEVEL, M	11	0.15)							
Reference	Unit	Variable	Given Measu	ısu M≃.05	15 N=.10	0 M=.15	M=.20	M=. 25	₩.30	M=,35	₩.40	#±.45	₩.50	M=, 55	₩.60
VII297 (3.9)VII78 (3.11)VII78 16.30ne413 16.30ne445 (3.27)VII89 (3.12)VII78 (3.12)VII78 (3.12)VII78	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	who zeta D who zeta D who zeta D who zeta D was well with the zeta D zeta S.P. Zeta S.	(6.112) one 430	0.0631 0.0562 18.088 -2.477 0.2367 -0.190 0.0463 -2.976 0.0463 -3.07 -3.07 -0.879 0.4607 -1.960 -0.004	20.0.0	10.4443 11.435 11.435 11.435 11.435 11.435 11.435 11.5.830 12.5.830 13.60 13.60 13.60 13.60 14.60 15.60 16.60 16.60 17.60 17.60 18.60 18.60 19	0.5913 0.0496 1.9226 17.694 -2.644 -0.007 -0.019 -14.43 0.1934 1.0891 -0.019	0.7400 0.0502 2.4026 17.447 17.447 17.447 1.0011 1.0011 1.1091 1.1091 1.1091 1.1091	0.8905 0.0509 17.133 17.133 1.1350 1.1350 1.1350 1.1350 1.1350 1.1350	1.0430 0.0518 16.746 16.746 10.0518 10.028 10.0430 10.236 10.236 10.236 10.236 10.236 10.236 10.236 10.236 10.236 10.236 10.032	1.1989 0.0529 3.8285 16.275 16.275 -3.281 -0.016 -0.033 -0.049 -1.612 112.69 112.09 0.2378 0.4715 1.2098 -1.7.46 -0.038	1.3574 0.0542 15.706 15.706 -0.018 -0.018 12.49 12.49 12.49 0.2389 0.5187 1.2608 0.5187 0.5389	1.5182 0.0538 15.023 15.023 15.023 15.023 10.042 10.020 178.57 1.003 1.13.931 1.13.85 1.3.85	1.6831 0.0577 0.0577 14.202 14.202 -0.022 -0.023 -0.023 -0.068 -376.4 -2.347 -2.347 -2.347 -2.347 -2.347 -2.347 -2.347 -376.4 -376.4 -376.4 -11.5 -0.068 -376.4 -11.5 -0.068 -376.4 -12.4 -131.5 -0.068 -376.4 -131.5 -0.068 -376.4 -131.5 -0.068 -376.4 -0.068 -0.06	1.8511 0.0601 13.213 4.163 4.163 10.024 10.025 1.5.05 1.5.32 1.5.33 1.5.
	·														

Table C.5.1	ONGITUD	LONGITUDINAL AIRPLANE TRANS FLIGHT CONDITION: TAKE-OFF I	PINE TRANSF TRKE-OFF A	FER FUNCTION AT SEALEVEL, WEIGHT	TION EVEL,	WEIGHT	= 39,5	= 39,508 LBS,	M = 0.15	15						
Reference	Uhit	Variable	Given Me	Measu M	M=.05 I	M=.10	₩.15	M=.20	M=.25	£.3	№.35	규. 49	₩.	M±.50	#.55	M=.60
(6.77)one417	₹	ಕ ಹಿತಿಕ		12,72	-102.8 -128.0 -2032 185.26 1;	-102.8 -207.6 -316.3 -128.0 -391.0 -884.8 -2032532511224 185.26 1290.2 6182.6	-316.3 -431.1 -884.8 -1621. -11224 -21069 6182.6 19791.	l .	-554.6 -2643. -36237 49777.	-689.6 -4016. -58142 107434		-1010. -8238. -1E+05 378181	-1203. -11401 -2£+05 648528	-1410. -15430 -2£+05 1E+06	-1627. -20480 -3E+05 2E+06	-1854. -26829 -4E+05 3E+06
(6.79)one417	e S	2823		9779	-0.466 -10.59 -(-1.928 3 -0.153 0	-1.873 - -84.16 - 31.515 9 0.1221 -	-4.251 -288.5 9.7467 -0.638	-4.251 -7.645 -12.12 -288.5 -692.3 -1372. 9.7467 -1.311 -16.59 -0.638 -1.579 -3.140	-12.12 -1372. -16.59 -3.140	-17.79 -2416. -42.62 -5.593	-17.79 -24.76 -24163924. -42.62 -85.83 -5.593 -9.297	-33.20 -6014. -154.0 -14.67	-43.32 -8827. -257.5 -22.67	-55.37 -12536 -409.2 -34.14	-69.69 -17353 -626.2 -50.67	-86.67 -23543 -930.6 -75.17
(6.81)one418	Ntheta	Atheta Btheta Ctheta		1.7.1	-10.57 -1-7.719 -1.157 1	-85.04 - -8.505 - 14.973 6	-289.3 -182.4 6.0805	-289.3 -693.9 -1375. -182.4 -616.5 -1563. 6.0805 -2.162 -20.66		-2422. -3382. -62.33	-3933. -6584. -147.7	-6027. -11909 -309.7	-8847. -20415 -601.1	-12566 -33653 -1104.	-17396 -53896 -1949.	-23604 -84524 -3341.
(6.76)one416	10	6 8000		· * # # # # # # # # # # # # # # # # # #	56.201 1.71.113 13.30.146 55.9.4628	112.41 1 153.11 4 52.966 3 -52.48	168.63 425.57 386.14 -13.92		281.18 1236.2 1850.5 20.787	337.52 1822.4 3189.8 52.822		450.43 3444.7 7447.8 180.58	507.04 4532.4 10474. 291.05	563.81 5852.8 14036. 437.28	620.77 7457.7 18014. 620.22	678.01 9416.2 22168.
(6.84) one 420		6,8,C,0,E>0 D(BC-AD)-B2E>0	20 32E20	45. 30.	ži	7.263 NO N	NO ON	-2.163 NO YES	Po. 173 NO YES	-13.38 NO YES	-26.33 NO YES	NO NES	-76.21 NO YES	-118.5 NO YES	-181.8 NO YES	-262.8 NO YES
							-									

Table C.5.2 L	LONGITUD	LONGITUDINAL RIRPLANE TRANSF FLIGHT CONDITIONS: CRUISE #1	ANE TRANSI CRUISE #	س	T10NS	PARD LO	ITER (I	¥ = 0.2	R FUNCTIONS (M = 0.25) FOR (W	- 11	39,508 #,	- 4	5,000 ft]			
Reference	Uhit	Variable	Given Mk	Measu M	N=.05	M=.10	M=, 15	₩.20	M=.25	5 N=.30	0 11:35	5 正.40	n.45	.¥.50	M=, 55	M=.60
(6.77)one417	Ž	223		11 17 19	-100.9 -119.0 1960 162.86 9	-203.6 -328.2 -4940. 928.06	-309.9 -736.2 -10039 4315.6	-421.6 -1345. -18340 13738.	-541.2 -2187.) -30951 34500.	2 -671.1 -3315. 1 -49000 74422.	1 -814.7 -4803. 0 -73614 . 144800	7 -975.9 -6756. 4 -1E+05 0 261885	9 -1157. -9311. 5 -1E+05 5 49071	-1353. -12568 -2£+05 740581	-1559. -16664 -3E+05 1E+06	-1777. -21827 -3£405 2£406
(6.79)one417	S.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		7 9 7 9	-0.387 - -8.631 - -1.455 - -0.188 2	-1.559 -70.92 -58.84 2.2438	-3.537 -235.9 10.035 -0.545	-6.361 -566.2 1.2689 -1.390	2 -1122. 9 -9.798 1 -2.777	9 -14.80 -1976. 3 -28.06 7 -4.952	0 -20.60 -3210. 6 -58.12 2 -8.231	0 -27.63 4919. 2 -105.4 1 -12.98	3 -36.04 -7220. 4 -177.1 3 -20.04	1 -46.07 -10253 -282.2 1 -30.13	-57.99 -14194 -432.6 -44.63	-72.12 -19257 -643.5 -66.06
(6.81)one418	Ntheta	Atheta Btheta Ctheta		\$ \$ \$	-8.649 -6.555 -0.984	-69.53 -87.58 -23.02	-236.6 -124.1 5.3554		-567.4 -1125. -425.8 -1082. 0.0857 -11.07	-1980. -2341. 7 -35.86	3216. 4559. 6 -86.42	-4928. -8245. 2 -182.0	-7234. -14135) -353.8	-10274 5 -23301 6-650.0	-14224 -37317 -1147.	-19300 -58524 -1965.
(6.76)one416	5	& & & & & & & & & &		8325	55.178 1 62.086 2 21.268 2 11.141 10	271.43 256.10 16.737	165.56 352.61 295.46 -13.59	220.78 644.92 727.71 -1.567	276.03 1028.5 11424.0	331.33 5 1516.4 0 2448.7 9 33.176	3 386.69 4 2122.9 7 3853.0 6 66.450	9 442.11 9 2866.4 0 5669.9 0 115.33	1 497.64 1 3771.5 3 7925.6 3 185.57		609.12 6205.8 13350. 387.84	
(6.84)one420		A,B,C,D,E>0 D(BC-AD)-B2E>0	>0 82E>0	. 2 €			22		1			1	4.80 YES	NO YES	-106.3 NO YES	-155.9 NO YES
		,														

Table C.5.3 L	ONGITUD	LONGITUDINAL AIRPLANE TRANSF FLIGHT CONDITION: CRUISE #2	IE TRANSFER	ER FUNCTIONS (M = 0.4, W	ER FUNCTIONS (M = 0.4, W = 20,932 #, h = 5,000 ft	132 ≇, h	ו = 5,00	io ft							
Reference	Unit	Variable 6	Given Measu	M=.05	M=.10	M=.15	M=.20	M=.25	№30	₩=,35	M=.40	M=.45	M=.50	N=.55	M=.60
(6.77)one417	⊋	2832		-137.3 -171.0 -1987. 179.63	-277.9 -425.1 -584.4 -1337. -515810781 1871.7 9364.4	-425.1 -1337. -10781 9364.4	-582.8 -2464. -20131 30207.	-755.3 -4045. -34534 76133.	-947.8 -1166. -61969088. -55363 -84034 16441 320124	l	-1420. -12970 -1E+05 579127	-1717. -18182 -2E+05 993204	-2031. -24794 -2£+05 2£+06	-2352. -32999 -3E+05 3E+06	-2684. -43232 -4E+05 4E+06
(6.79)one417	e Z	Ra Ca Da		-0.732 -9.923 -0.811	24.522 24.522 -0.113	-6.676 -271.2 3.9547 -0.553	-12.00 -650.7 -8.540 -1.304	-19.04 -1290. -29.81 -2.558	-27.94 -2272. -67.97 -4.537	-38.89 -3689. -132.2 -7.540	-52.15 -5654. -234.2 -11.91	-68.04 -8300. -389.1 -18.51	-86.97 -11789 -616.6 -28.05	-109.4 -16321 -942.2 -41.95	-136.1 -22148 -1398. -62.89
(6,81)one418	Ntheta	Atheta Btheta Ctheta		-9.889 -6.426 -0.547	-79.50 -33.73 17.818	-270.5 -287.1 3.8869	-648.7 -947.4 -13.15		-2264. -5179. -155.7	-3677. -10081 -361.3	-5635. -18233 -753.0	-8271. -31258 -1458.	-11747 -51528 -2679.	-16263 -82524 -4734.	-22066 -1E+05 -3120.
(6.76)one416	10	E 8 3 0 1		55.449 64.954 17.613 4.1315		166.40 474.34 288.25 -4.955	221.93 860.84 706.23 7.5555	277.52 1371.0 1382.6 28.167		388.96 2826.8 3756.6 123.30	444.87 3815.0 5546.5 211.90	500.97 5016.6 7790.5 339.10	557.30 6474.0 10408. 506.37	613.94 8243.2 13296. 712.84	
(6.84)one420		A, B, C, 0, E>0 D(BC-A0)-B2E>0) E>0	YES YES NO	NO ON	NO NES		-20.36 NO YES	-40.30 NO YES		-113.6 NO YES	-183.1 NO YES	-2r3.r NO YES	MO NO YES	-383.b NO YES
							•								

Table C.5.4 L	CNGITUD	LONGITUOINAL AIRPLANE TRANSFI FLIGHT CONDITION: DASH-IN (M	PINE TRANSF DASH-IN (P	8"	FUNCTIONS 0.55, W =	39,50	8 # , h	39,508 #, h = 1,000 ft)	ft)							
Reference	Unit	Variable	Given Me	Measu M	M=, 05	M=. 10	M=, 15	M=.20	M=.25	№.30	M=, 35	M=.40	M=. 45	M=.50	M=,55	M=.60
(6.77)one417	Z	& & & & &		7778	-102.4 - -125.9 - -2017 180.17 1	-206.8 -315.0 -377.6 -853.2 -524310972 1207.9 5758.3	-206.8 -315.0 -429.2 -377.6 -853.2 -1562. -524310972 -20486 1207.9 5758.3 18415.		-551.9 -685.9 -25463866. -35107 -56185 46305. 99932.		-834.8 -1003. -56157920. -85081 -1E+05		-1193. -10952 -2E+05 603202	-1398. -14814 -2E+05 994791	-1613. -19659 -3E+05 2E+06	-1838. -25752 -4E+05 3E+06
(6,79) ane 417	e R	Ra Ca Da		7777	-0.449 - -10.18 - -1.900 2	-1.807 -80.93 28.655 0.1950	-4.099 -277.3 9.8480 -0.619	-7.373 -665.4 -0.715 -1.542	-11.69 -1319. -15.04 -3.068	-17.15 -2323. -39.31 -5.465	-23.88 -32.02 -3772. '-5780. -79.53 -142.9 -9.084 -14.33	-32.02 -5780. -142.9 -14.33	-41.78 -8484. -239.2 -22.15	-53.40 -12049 -380.3 -33.34	-67.21 -16630 -582.2 -49.45	-83.59 -22630 -865.3 -73.33
(6.81)one418	Ntheta	Atheta Btheta Ctheta		T'7 T	-10.16 - -7.534 - -1.156 1	-81, 73 -8, 808 13, 315	-278.1 -169.1 5.9569	-666.9 -573.1 -1.586	-1322. -1454. -18.32	-2328. -3145. -55.92	-3780. -6124. -132.9	-5793. -11076 -278.9	-8503. -18988 -541.4	-12077 -31301 -994.5	-16720 -50128 -1755.	-22686 -78616 -3009.
(6.76)one416	01	œ æ ∪ o :		್ ಬೆಬೆಬೆಗೆ	55.999 1 69.898 1 29.111 5 9.7138 -	112.00 149.38 53.950 -49.78	168.03 410.11 366.17 -13.89	224.07 747.87 897.11 0.5868	280.16 1192.2 1756.6 18.692	336.30 1757.5 3026.5 48.181	392.50 2460.4 4775.8 95.200	448.78 3322.2 7054.8 165.19	505.18 4371.1 9910.2 266.15	561.73 5644.6 13257. 399.29		675.47 9081.3 20818. 758.97
(6.84) one 420		A,B,C,D,E>0 D(BC-AD)-B2E>0	>0 B2E>0	S S			. O. O.	-1.741 NO YES	-3.200 NO YES	-12.12 NO YES	75. 73 NO YES	-43.78 NO YES	8 9.5 YES	-106.6 NO YES	-164.4 NO YES	-238.2 NO YES
						•										
							•									

Table C.5.5 L	ONGITUD LIGHT C	LONGITUDINAL RIRPLANE TRANSFI FLIGHT CONDITION: MANEUVER (ANE TRAN	SFER FL	ER FUNCTIONS W = 30,220 #	5 n = 1	5, h =	ER FUNCTIONS W = 30,220 #, n = 5, h = 1,000 ft, M =	t, ≅ ::	0.35)						
Reference	Unit	Variable	Given	Measu	N=.05	M=.10	N=. 15	N=.20	M=.25	₩.30	∦ .33	₩.40	# =.45	ñ.50	R =.55	₩=.60
(6.77)one417	Ž	₴ ₷₷₴			-690.6 -5183. -5036. 2388.1	-1389, -2104, -3880, -6807, -13468 -36039 3845,0 10276,	1 _	-2845. -11783 -79088 28151.	-3622. -18768 -1E+05 67521.	-4446. -28042 -3£+05 143209	-5330. -40076 -4E+05 276628	-6291. -53548 -6E+05	-7336. -75301 -8E+05 853388	-8480. -1E+05 -1E+06 1E+06	-9725. -1E+05 -1E+06 2E+06	-11078 -2£+05 -2£+06 Æ+06
(6.79) one 417	ē.	£ & 5 5		1 1 1 1	-0.587 - -10.70 - -115.7 :	-2.362 -71.59 706.87 7.6533	-5.360 -296.1 28.572 1.0351	-9.639 -713.8 -263.9	-15.29 -1414. -556.2 -13.38		-31.22 -4037. -1336. -49.49	-31.22 -41.86 -40376184. -13361871. -49.49 -81.42	-54.62 -69.81 -907312884 -25403375. -128.9 -196.8	-69.81 -12884 -33.75. -196.8	-87.86 -17833 -4421. -294.2	-109.2 -24193 -5733. -437.1
(6.81)one418	Ntheta	Atheta Btheta Ctheta		111	-10.83 -194.2 -825.0	-87.13 592.40 997.83	-296.4 -290.3 34.232	-710.9 -1140. -339.3	-1409. -2658. -871.1	-2481. -5362. -1710.	-4030. -9944. -3004.	-6176. -17382 -4940.	-9065. -29087 -7809.	-12874 -47106 -12008	-17823 -74446 -18142	-24184 -1E+05 -27107
(6.76)one416	5	& B U C I		n 4 c/l (56.106 7 428.92 281.55 -484.8	-416.0 -1681. -525.3	168.36 521.73 469.37 293.78	224.53 958.77 1268.6 567.91	280.75 1469.1 2260.9 868.50	337.03 2107.5 3623.7 1236.0		449.88 3867.7 7767.3 2204.5		563.31 6478.0 13999. 3453.2	620.37 8217.1 17697. 4144.0	677.77 10338. 21500. 4801.1
(6.84)one420		A,B,C,O,E>0 D(8C-AO)-82E>0	32E>0	1 Z Z				-122.4 NO YES	-116.6 NO YES	-115.1 NO YES	-116.4 NO YES	-127.4 NO YES	-115.1 NO YES	-116.1 NO YES	-148.4 NG YES	-143.5 NO YES
							-									

Table C.5.6 L	ONGITUD LIGHT C	LONGITUDINAL BIRPLANE TRANSFER FUNCTIONS FLIGHT CONDITION: DASH-OUT (W = 20,932 #, h = 1,000 ft, M = 0.55)	RNE TRANS DRSH-OUT	FER FUR	ER FUNCTIONS W = 20,932 #	4 "	1,000 f	t, A =	0.55)				·			
Reference	Unit	Variable	Given M	Measu	N=.05	M=. 10	M=.15	№.20	M=.25	M=.30	M=, 35	N=.40	M=. 45	M=.50	M=,55	. M=.60
(6.77) one 417	J.	&& 3&		7777	-139.5 - -189.7 - -2052 217.92 2	-282.6 -433.1 -676.0 -1553. -551611905 2490.8 12555.	-433.1 -1553. -11905 12555.	-595.2 -2871. -22751 40553.	-773.8 -4726. -39662 102247	-974.7 -7265. -64333 220872	-1205. -10699 -98554 430003	-1474. -15341 -1E+05 777925	-1792. -21619 -2E+05 1E+06	-2127. -29579 -3£+05 2£+06	-2467. -39423 -4E+05 4E+06	-2816. -51655 -5E+05 -6E+06
(6.79)one417	® Z	88 88 13 88 88		7777	-0.848 - -11.62 - -0.274 2	-3.411 -92.84 24.712 -0.139	-7.738 -318.9 2.6107 -0.587	-13.91 -765.2 -13.14 -1.369	-22.07 -1517. -41.37	-32.38 -2671. -92.50 -4.745	-45.07 -4338. -178.8 -7.893	-60.44 -78.86 -66499760. -315.9 -524.1 -12.48 -19.47		-100.8 -13863 -830.0 -29.61	-126.8 -19193 -1267. -44.47	1 -157.7 1 -26045 -1881. 1 -67.05
(6,81)one418	Ntheta	Atheta Btheta Ctheta		ディデチ	-11.62 -7.086 -0.268	-93.45 -52.80 20.315	-318.0 -387.6 2.8109	-762.5 -1273. -22.53	-1511. -3219. -88.39	-2661. -6957. -240.7	-4322. -13543 -555.9	-6623. -24494 -1156.	-9722. -41930 -2239.	-13808 -69219 -4113.	-19115 -1E+05 -7266.	-25937 -2E+05 -12464
(6.76)one416	1 0	& & O O I		ភភ∺ភ	56.309 1 68.640 2 17.139 5 3.5021 -	112.63 215.54 51.244 -31.12	168.98 550.84 377.86 -4.068	225.39 998.06 920.55 13.363	281.86 1589.3 1806.2 44.081	338.42 2341.7 3124.5 98.947		395. 10 451. 94 3276. 6 4422. 0 4957. 4 7375. 5 189. 20 326. 73	508.98 5814.9 10459. 526.77	566.30 7504.1 14164. 796.91	623.97 9554.9 18434. 1143.7	682.12 12054. 23138.
(6.84)one420		A,B,C,O,E>0 D(BC-AD)-B2E>0	>0 B2E>0							NO YES	NO YES	NO YES	NO YES			
							•	· _								

Table C.5.7 L	ONGITUD LIGHT C	LONGITUDINAL RIRPLANE TRANSFER FUNCTIONS FLIGHT CONDITION: LANDING (N = 20,932 #,	NSFER FL	NCT 10N	S = 4,	= 20,932 #, h = SEPLEVEL,	E	= 0.15)							
Reference	Unit	Variable Given	Measu	M=.05	퓼.10	N=. 15	M=.20	M=. 25	M=.30	N=.35	규.40	严.45	M=.50	M=,55	№.60
(6.77)one417	⊋	2232		-140.0 -180.6 -2029.	-283.8 -642.6 -5314. 2280.3		-598.3 -2729. -21054 37193.	-778.5 -4495. -36318 93782.	-981.7 -6911. -58517 202591	-1215. -10182 -89269 394417	-1488. -14605 -1E+05 713550	-1812. -20592 -2E+05 1E+06	-2153. -28174 -2£+05 2£+06	-2498. -37532 -3E+05 3E+06	-2851. -49139 -4E+05 5E+06
(6,79)ane417	ē	888 588 898	, , , ,	-0.879 -10.30 -0.076 -0.143	-3.537 -8.023 -82.31 -283.1 21.090 1.8830 -0.123 -0.507	-8.023 -283.1 1.8830 -0.507	-14.43 -679.3 -12.37 -1.178	-22.88 -1347. -38.19 -2.301	-33.58 -2371. -85.07 -4.078	-46.74 -3851. -164.2 -6.787	-62.67 -5903. -290.0 -10.74	-81.77 -8665. -481.0 -16.77	-104.5 -12307 -761.7 -25.53	-131.5 -17040 -1163. -38.38	-163.6 -23123 -1726. -57.96
(6.81)one418	Ntheta	Atheta Btheta Ctheta		-10.31 -6.189 -0.144	-82.95 -49.87 17.879	-282.2 -355.9 2.0478	-676.8 -1168. -21.82	-1342. -2953. -84. 16	-2362. -6381. -228.5	-3836. -12422 -527.2	-5879. -22467 -1096.	-8630. -38515 -2122.	-12256 -63491 -3899.	-16968 -1E+05 -6887.	-23022 -2E+05 -11814
(6, 76) one 416	10	E 8 3 0 4	2. 2 · · · ·	56.522 63.869 14.176 2.8093 4.4842	113.06 202.27 46.723 -27.13	169.62 518.75 344.37 -3.180	226.24 939.97 839.49 13.006	282.93 1496.6 1648.5 41.934	339.71 2204.9 2854.8 93.783	396.62 3084.7 4535.8 179.27	453.69 4162.3 6760.6 309.91	510.97 5472.1 9609.4 500.48	568.53 7060.0 13052. 759.31	626.46 8986.7 17060. 1094.2	684.89 11334. 21536. 1507.8
(6.84) one 420		A,B,C,D,E>0 D(BC-RD)-B2E>0	- 	YES NO	NO ON			NO YES	NO YES		NO YES	NO YES	1	NO YES	
							-								

Table C.6.1 L	ATERAL- LIGHT C	LATERAL-DIRECTIONAL BIRPLANE FLIGHT COMDITION: TAKE-OFF A	ı ⊢	ANSFER EPLEVEL	TRANSFER FUNCTION SEALEVEL, METGHT		= 39,508 LBS,	, M = 0.15	15						
Reference	Unit	Variable	Given Measu	M≃.05	M=.10	N=.15	M=.20	M=. 25	M=.30	M=.35	₩.40	正.45	M=.50	M=, 55	M=.60
(6.146)one447 aileron	2	28888		26.469 219.96 -215.9	229.45 621.02 54.48	295.21 1610.6 209.77	26.469 229.45 295.21 185.39 -125.4 -696.9 -16112978. 219.96 621.02 1610.6 2613.3 2890.3 932.21 -605422337 -215.9 -54.48 209.77 696.19 1498.6 2739.8 4573.6 7205.6	0 -125.4 2890.3 1498.6	0 -696.9 932.21 2739.8	0 -1611. -6054. 4573.6	0 0 0 0 -1611297849417581. -605422337 -54648 -1E+05 4573.6 7205.6 10899. 16037.	0 0 -49417581. -54648 -1E+05 10899. 16037.	0 -7581. -1E+05 16037.	0 -11116 -2E+05 23186.	0 -15928 -4E+05 33143.
(6.146)one447 rudder	9	28888		0.7486 -9.653 -82.27 82.186	3,1340 123,14 416,41 -222,4			14.626 22.899 1230.8 2405.0 9100.7 22941. -864.8 -1341.	22.899 33.010 45.040 2405.0 4163.4 6626.0 22941. 49507. 93698. -134119882847.	45.040 6626.0 93698. -2847.	59.054 9947.6 165527 -3960.	75.118 14286. 277772 -5371.	93.335 19853. 452114 -7109.	26876. 720138 -9213.	136.46 35634. 1E+06 -11731
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		31.257 -373.7 -112.4	533.66 ERR 719.25	2239.6 ERR 7827.2	31.257 533.66 2239.6 5508.0 10962. 19392. 31776. -373.7 ERR ERR ERR ERR ERR -112.4 719.25 7827.2 35081. 109784 281704 632290	10962. ERR 109784	19392. ERR 281704	31776. ERR 632290	49365. ERR 1E+06	73828. ERR 2E+06	31776. 49365. 73828. 107545 153853 217682 ERR ERR ERR ERR 632290 1E+06 2E+06 4E+06 8E+06 1E+07	153853 ERR 8E+06	217682 ERR 1E+07
(6.148) one 448 Ntheta rudder	Ntheta	Atheta Btheta Ctheta		-9.181 140.70 36.242		-54.00 -48.87 -780.6 -2700. -326.9 -1725.	23.320 -6067. -5234.	173.84 -11758 -12886	420.88 -20916 -27858	785.10 -34945 -54971	1288.3 -55545 -1E+05	1953.6 -84742 -2E+05		3750.4 -2E+05 -5E+05	4920.6 -2E+05 -7E+05
(6.15 0) <i>o</i> ne448 aileron	Npsi	Apsi Bpsi Cpsi Dpsi		-25.94 -203.7 -6.574 -58.13	-228.7 -486.8 -22.21 212.84	-295.3 -1219. -88.48 1505.7	-25.94 -228.7 -295.3 -188.0 118.19 682.02 -203.7 -486.8 -121918651642. 1024.7 -6.574 -22.21 -88.48 -210.3 -324.8 -191.6 -58.13 212.84 1505.7 5042.9 12609. 26950.	118.19 -1642. -324.8 12609.	682.02 1024.7 -191.6 26950.	1585.1 9023.3 806.15 51835.	2934.5 26755. 3880.9 92315.	4873.2 61155. 11284. 155883	7480.7 122282 26938. 253335	10971. 225681 57435. 401984	15723. 395216 113807 625792
(6, 150) one 448 rudder	Nps 1	Apsi Bpsi Cpsi Opsi		10.849 75.922 -0.143 21.125		-456.7 -2813. -53.52 -320.6	-106.0 -456.7 -11102166. -439.4 -2813928123368 -5.025 -53.52 -249.5 -823.1 -90.94 -320.6 -729.6 -1436.		-3736. -50391 -2182. -2588.	-5933. -95357 -4911. -4378.	-8875. -2£+05 -10172 -7070.	-12684 -17500 -3E+05 -5E+05 -19645 -36259 -10912 -16193		-23459 -7E+05 -64020 -23116	-30695 -1E+06 -1E+05 -32081
(6.145)one447	100	8 8 J O		46.013 86.283 -68.63 -103.4	96.180 578.80 638.24 ERR	164.66 1205.2 1722.9 ERR	223.25 2089.1 3672.5 12177.	278.53 333.03 3293.2 4874.2 6901.8 11849. 29965. 63985.	278.53 333.03 387.36 3293.2 4874.2 6728.1 6901.8 11849. 18690. 29965. 63985. 120258		441.69 9029.8 28100. 210699	496.04 11862. 40767. 351167	550.68 15481. 57972. 568412	605.55 20131. 81526. 904911	660.54 26238. 113935 1E+06

	0	10	ιρ
	M=.60	-10028 -12772 NO NO YES YES	5.629
	M=.55	0028	0762
	<u>\$</u>	90 100 FE SE	15 3.0
	M=,50	-773 RO YES	3.181
	M=.40 M=.45	-5882. NO YES	3.0972
	₩. 16	-4365. NO YES	2.8919
	№ .35	-3162. NO YES	2.6237
15	1. 30	-2215. NO YES	2.3076
LATERAL-DIRECTIONAL AIRPLANE TRANSFER FUNCTION FLIGHT CONDITION: TAKE-OFF AT SEALEVEL, WEIGHT = 39,508 LBS, M = 0.15	N=.20 N=.25	170.44 -253.1 -582.7 -976.8 -150022153162436558827739. NO ERR ERR NO	0.4046 0.8064 1.2022 1.5881 1.9589 2.3076 2.6237 2.8919 3.0972 3.1815 3.0762 2.6295
08 LBS,	M=.20	-976.8 NO YES	1.5881
= 39,5	M=:15	-582.7 -976 ERR NO ERR YES	1.2022
NCT ION WEIGHT	Measu M=.05 M=.10 M=.15	-253.1 ERR ERR	7.8064
NSFER FI	M=.05	170.44 NO NO	9.6 9.6
NE TRA	Measu		
- AIRPLI	Given	^0 32E>0	
CTIONAL TION: 1	Variable	E A,B,C,D,E>O O(BC-AO)-B2E>O	음
-DIRE	Var	E A,B D(B	포
ATERAL LIGHT	Unit		r/s
Table C.6.1 L	eoce.	(6.84)one449	(6. 104) one 427
Table	Reference	(6.84	(6.10

Table C.6.2 U	ATERAL-1 LIGHT CO	LATERAL-DIRECTIONAL AIRPLAN FLIGHT CONDITIONS: CRUISE #	1	TRANSFER FUNCTIONS (M = 0.40) AND LOI	ER FUN.	CT TON	TER CM	= 0.2) FOR (H = 39,	TRANSFER FUNCTIONS (M = 0.25) FOR (M = 39,508 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	h = 5,0	100 ft.]			
Reference	Unit	Variable (Given Measu		M=.05 M	M=.10	N=. 15	M=.20	M=, 25		1E.30 1E.35 1E.40 1E.45	开.40	∰.45	ñ.50	N=,55	M=.60
(6.146)one47 aileron	£	8 8 8 8 8 8 8 8 8		311 -25	0 0 29.936 219.21 311.14 488.92 -254.6 -77.10	0 19.21 3 88.92 1	0 317.77 1313.8 112.83	0 263.07 2212.5 462.93	0 38.028 2657.1 1034.1	0 -400.5 1619.9 1912.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -2203. -13626 50 63.1	0 0 0 -220337725890. -13626 -35397 -74873 5063.1 7666.4 11286.	0 -5890. -74873 11286.	0 -8733. -1E+05 16322.	0 -12613 -3£+05 23335.
(6.146)one447 rudder	2	88 88 88 88		-8. -11.	0.7427 2. -8.526 89 -111.8 25	2.5116 6 89.688 2 256.15 1 -162.8 -	2.5116 6.6067 89.688 402.47 256.15 1860.8 -162.8 -403.3	2.5116 6.6067 12.151 89.688 402.47 992.87 256.15 1860.8 6303.9 -162.8 -403.3 -679.6	19.080 1946.2 15955. -1037.	27.516 3368.0 34439. -1515.	37.538 5356.1 65148. -2142.	49.206 8033.1 115016 -2949.	62.576 11524. 192897 -3967.	77.734 15994. 313802 -5218.	94.737 21618. 499603 -6730.	113.62 28609. 785605 -8536.
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		-14 -14	58.641 39 -432.7 -144.9 40	38.30 13.52 t	1794.0 ERR 5138.0	4499.5 ERR 23702.	8987.8 ERR 74644.	15905. ERR 191811	58.641 398.90 1794.0 4499.5 8987.8 15905. 26052. 40455. -432.7 ERR ERR ERR ERR ERR ERR -144.9 403.52 5138.0 23702. 74644. 191811 430602 876492		60478. ERR 2E+06	88066. ERR 3E+06	125949 ERR 5E+06	178160 ERR 9£+06
(6,148)one448 Ntheta rudder	Ntheta	Atheta Btheta Ctheta		.5. 176 49.	-2.335 -5 176.67 -5 43.246 -2	-53.10 -561.7 -227.8	-53.10 -60.53 -561.7 -2086. -227.8 -1299.		-10.09 106.44 -46868944. -39399544.	302.65 -15665 -20319	595, 13 -25838 -39599	595.13 1001.7 -25838 -40649 -39599 -72366	1541.3 -61515 -1E+05	2205.1 -89898 -2E+05	3003.2 -1E+05 -3E+05	3957.5 -2E+05 -5E+05
(6.150)one448 aileron	Npsi	Apsi Bpsi Cpsi Opsi		-5. -2. -3.	-29.50 -275.1 -6.7% -78.07 12	-218.5 -387.6 -15.28 123.17	-218.5 -317.5 -387.6 -995.6 -15.28 -59.27 123.17 1007.7	-264.5 -1595. -142.7 3470.6	-264.5 -42.68 390.56 -1595163027.04 -142.7 -230.7 -186.0 3470.6 8731.5 18687.	390.56 -27.04 -186.0 18687.		1100.2 2173.0 5215.8 17117. 350.13 2080.1 35947. 64010.	2173.0 3725.2 5820.3 17117. 40451. 82128. 2080.1 6313.5 15329. 64010. 108062 175578	5820.3 82128. 15329. 175578	8632.8 152833 32960. 278544	12469. 268953 65618. 433553
(6. 150)one448 rudder	Nosi	Apsi Bpsi Cpsi Dpsi		S, b, E, E,	13.647 108.64 0.112 25.517	-77.21 -276.7 -2.745 -64.68	-364.7 -1911. -30.63 -246.7	-906.6 -6435. -145.9 -561.2	-77.21 -364.7 -906.6 -17763065. -276.7 -1911643516260 -35062 -2.745 -30.63 -145.9 -484.2 -1284. -64.68 -246.7 -561.2 -10871929.	-3065. -35062. -1284. -1929.	-4865. -66307 -2892. -3224.	-7275. -1E+05 -5988. -5155.		-10392 -14333 -2E+05 -3E+05 -11559 -21325 -789411649	-19207 -5E+05 -37636 -16559	-25125 -8E+05 -64920 -22902
(6.145)one447	23	EBUO			53.913 9 384.43 4 51.480 4 -108.6	53.913 91.031 384.43 495.26 51.480 493.29 -108.6 ERR	159.28 1022.3 1336.4 ERR	159.28 219.04 1022.3 1761.9 1336.4 2817.2 ERR 8498.2	274.09 2765.0 5239.7 20900.	327.85 4081.2 8944.9 44555.	159.28 219.04 274.09 327.85 381.28 434.64 488.01 1022.3 1761.9 2765.0 4081.2 5624.0 7539.2 9900.1 1336.4 2817.2 5239.7 8944.9 14067, 21095. 30532. ERR 8498.2 20900. 44555. 83624. 146352 243714	434.64 7539.2 21095. 146352	488.01 9900.1 30532. 243714	541.65 12907. 43298. 1 394212	595.51 16776. 60701. 627244	649.50 21858. 84518. 1 986727

	M=.60	-9298. NO YES	2.3386
	M=.55	-7328. NO YES	. 8061
	M=.50	84.	.9022
ft.	.45	14756 NO YES	253 2,
2,000	M=.40 M=.45	3434 NO YES	3.2 5.2
= 4		-325 NO YES	1 2.63
508 #,	N=,35	-2381. NO YES	2.393
H = 39,	M=.30	-1690. NO YES	2.1050
) FOR [M=.25	-1161. NO YES	1.7869
= 0.25	₩.20	-768.0 10 7ES	1.4487
TER (M	N=. 15	457.8 ERR 1	.0967
TRANSFER FUNCTIONS (M = 0.25) FOR (M = $39,508$ #, h = $5,000$ ft]	M:10 M:15 M:20 M:25 M:30	214.15 -183.3 -457.8 -768.0 -1161169023813253. NO ERR ERR NO NO NO NO NO NO ERR ERR YES YES YES YES	0.3691 0.7356 1.0967 1.4487 1.7869 2.1050 2.3934 2.6379 2.8253 2.9022 2.8061 2.3986
SFER FU	N=.05	14.15 - 0 0	7 1898
E TRAN	Measu	NZZ	
RUISE 1	6iven 1	_ G	
IONAL ONS: C		E R,B,C,D,E>0 D(BC-AD)-B2E>0	a.
DIRECT	Variable	8,8,C 0(8C-	A.S. P.
LATERAL-DIRECTIONAL AIRPLANE FLIGHT CONDITIONS: CRUISE #1	Unit		8/1
l .	94	ne449	one427
Table C.6.2	Reference	(6,84)one449	(6. 104) one 427
<u> </u>	ΟX	_ =	

Table C.6.3 LF	ATERAL- Light o	LATERAL-DIRECTIONAL AIRPLANE FLIGHT CONDITION: CRUISE #2	L AIRPLAN	E TRANC	FER FU	TRANSFER FUNCTIONS M = 0.4, W = 20,93	5 32 # , h	TRANSFER FUNCTIONS (M = 0.4, W = 20,932 #, h = 5,000 ft	O ft							
Reference	Unit	Variable	Given M	Measu M	N=.05	N=.10	M=, 15	№.20	M=, 25	ı⊭.30	N=.35	₩.40	₩=,45	N=.50	#.53	₩.60
(6.146)one447 aileron	99	8-88 8-8 8-88 8-88		738	0 50.318 1 77.609 3 -74.66 1	0 37.66 62.88 5.334	0 151.06 900.28 178.16	0 50.269 1406.8 485.91	0 -191.6 1379.2 1004.0	0 -620.8 -219.6 1811.6	50.318 137.66 151.06 50.269 -191.6 -620.8 -1297. 77.609 362.88 900.28 1406.8 1379.2 -219.6 -526374.66 15.334 178.16 485.91 1004.0 1811.6 3008.4	0 0 -23013736. -16667 -39000 4728.8 7145.0	0 -3736. -39000 7145.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -8107. -1E+05 15188.	0 -11443 -3£+05 21708.
(6.146)one447 rudder	9	8 8 8 8 8 8 8 8		id¶?	1.4262 5 3.8832 1 -5.724 3 -3.892 -	5.1484 112.39 315.07 -118.3	12.785 22.973 409.33 969.18 1837.6 5964.8 -258.9 -455.3		35.954 1892.2 15006. -740.1	51.875 3287.4 32414. -1140.	70.840 5245.5 61422. -1681.	51.875 70.840 92.946 3287.4 5245.5 7904.3 32414. 61422. 108623 -114016812391.	118.29 11404. 182437 -3297.	147.04 15951. 297175 -4421.	179. <i>2</i> 9 21777. 473678 -5785.	215.12 29188. 745579 -7420.
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		777	24.831 5 -126.1 -21.06 5	514.50 ERR 571.02	1993.6 ERR 5204.4	1993.6 4848.0 9656.4 ERR ERR ERR 5204.4 22707. 70744.	9656.4 ERR 70744.	17118. ERR 181480	28099. 43713. ERR ERR 407550 830163		65442. ERR 2E+06	95401. ERR 3E+06	136553 ERR 5E+06	193280 ERR 8E+06
(6, 148) one 448 Ntheta rudder	Ntheta	Atheta Btheta Ctheta		777	-12.39 - -7.567 - -0.079 -	-12.29 -413.1 -173.8	-12.29 32.638 143.51 -413.1 -1354, -3173. -173.8 -868.1 -2755.	143.51 -3173. -2755.	339.34 -6445. -7122.	339.34 642.34 -644511908 -712215391	1075.9 -20483 -32458	1075.9 1664.4 -20483 -33286 -32458 -61171	2433.4 -51644 -1E+05	339.34 642.34 1075.9 1664.4 2433.4 3385.3 -644511908 -20483 -33286 -51644 -76919 -712215991 -32458 -61171 -1E+05 -2E+05	4538.8 -1E+05 -3E+05	5922.6 -2E+05 -4E+05
(6.150)one448 aileron	Npsi	Apsi Bpsi Cpsi Opsi		7 7 17 4	-49.87 - -68.04 - -3.289 - -8.937 1	-137.7 -228.5 -16.54 169.51	-153.5 -57.92 -541.9 -725.9 -68.84 -159.9 1014.5 3310.8		174.76 -230.4 -210.8 8243.0	174.76 589.36 -230.4 2047.0 -210.8 55.631 8243.0 17613.	1244.4 2216.1 8078.7 20924. 1323.7 4946.1 33895. 603%.	2216.1 20924. 4946.1 603%.	3606.1 45366. 13415. 102027	5434.6 88364. 31077.	7832.7 160662 65225. 263321	11053. 278787 128079 410076
(6, 150) one 448 rudder	Npsi	Apsi Bpsi Cpsi Dpsi		7776	-2.280 - -1.519 - -0.151 - 0.3497 -	-90.12 -330.9 -6.043 -48.30	-337.2 -798.9 -19056173. -58.62 -267.1 -160.8 -382.8		-1551, -2673, -15518 -33488 -877.6 -2325, -791.5 -1481,	-15512673. -15518 -33488 -877.6 -2325. -791.5 -1481.	-4246. -63447 -5239. -2577.	-6353. -1E+05 -10861 -4250.	-9083. -2E+05 -20998 -6668.	-12539 -3E+05 -38795 -10012	-16820 -5E+05 -68555 -14417	-22021 -8E+05 -1E+05 -20147
(6.145) one 447	8	e e u a		ያ የ አ አ ሚ	54.849 9 74.168 4 23.019 4 5.2962	98.863 473.02 406.96 ERR	163.31 1033.3 1163.0 ERR	163.31 219.41 273.64 327.47 1033.3 1827.7 2910.2 432.1 1163.0 2577.1 4926.8 8542.3 ERR 7913.4 19497. 41723.	273.64 2910.2 4926.8 19497.	327.47 4332.1 8542.3 41723.	381.22 6000.3 13550. 78546.	381.22 434.98 488.76 542.83 6000.3 8072.5 10628. 13887. 13550. 20447. 29740. 42377. 78546. 137771 229797 372201	488.76 10628. 29740. 229797	98.863 163.31 219.41 273.64 327.47 381.22 434.98 488.76 542.83 473.02 1033.3 1827.7 2910.2 432.1 6000.3 8072.5 10628. 13887. 406.96 1163.0 2577.1 4926.8 8542.3 13550. 20447. 29740. 42377. ERR FR 7913.4 19497. 41723. 78546. 137771 229797 372201	597.13 18082. 59689. 592935	651.54 23593. 83516. 933685

	M=.60	-8037. NO YES	## HE
	M=,55	-6262. NO YES	8E
	₩.50	-4785. NO YES	8£
	N=.45	-3590, -4785. NO NO YES YES	8
	N=.35 N=.40 N=.45	-2620. NO P	EL CONTRACTOR CONTRACT
	1 .35	-1856 NO YES	0.5740
	N=.30	-1263. NO YES	0.7877
0 ft	H=.25	8.4759 -135.5 -293.0 -511.6 -823.0 -126318562620. YES ERR ERR NO NO NO NO NO NO ERR ERR YES YES YES YES	0.2018 0.3948 0.5686 0.7093 0.7957 0.7877 0.5740
5,00	N=.10 N=.15 N=.20	-511.6 NO YES	0.7093
S #, h	M=, 15	-293.0 ERR ERR	989 .
UNCTION = 20,9	N=.10	-135.5 ERR ERR	0.3948
E TRANSFER FUNCTIONS (M = 0.4, W = 20,932 #, h = 5,000 ft	M=,05	8.4759 Yes NO	0.2018
ANE TRA	Measu		
AL AIRPL	Biven	3.0 B2E>0	
LATERAL-DIRECTIONAL AIRPLANE TRANSFER FUNCTIONS FLIGHT CONDITION: CRUISE #2 (M = 0.4, W = 20,93	Variable	E R,B,C,D,E>0 D(BC-RD)-B2E>0	ra S. P.
TERRI -01	Unit		1 s/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	_	€	<i>₹</i>
Table C.6.3	Reference	(6.84)one449	(6. 104) one 427
Tabl	Refe	(6.8	(6.1

Table C.6.4 LF	TERAL- 16HT 0	LATERAL-DIRECTIONAL AIRPLANE FLIGHT CONDITION: DASH-IN (M	1	TRANSFER FUNCTIONS = 0.55, W = 39,508 #, h = 1,000 ft)					
Reference	Unit	Variable	Biven Measu	미 11.05 11.10 11.15 11.20 11.25	5 1F.30 1F.35	유.4	M=.45 N=.50	M=,55	M=.60
(6.146)one447 aileron	£	8.88 88		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 40 -633.4 -1506. 2 1105.8 -5298. 8 2553.0 4265.0	0 -2812 -20325 6721.7 10	0 0 -46917220. -50231 -1E+05 10169. 14964.	0 -10607 -11 5 -2E+05 -30 . 21636. 30	0 -15220 -3E+05 30928.
(6,146)one447 rudder	9	88 88 86 08 88 88		0.7380 2.9978 7.7593 14.103 22.091 -9.718 115.88 486.37 1179.9 2306.6 -88.19 379.18 2547.2 8467.0 21357.87.182 -209.5 -489.5 -824.3 -1274.	31.846 3992.4 46087. -1883.	56.967 9535.5 154058 -3735.	72.460 90.029 13692. 19022. 258497 420699 -50576686.	25742. (670043 -8656.	131.62 34118. 1E+06 -11013
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		34.997 504.45 2145.6 5294.0 10542. 18649. 30556. -379.8 ERR ERR ERR ERR -117.3 645.33 7212.6 32483. 101756 261160 586186	. 18649. 30556. R ERR ERR 5 261160 586186	47466. ERR 1E+06	70982, 103392, 147904 ERR ERR ERR 2E+06 4E+06, 7E+06	(7)	209255 ERR 1E+07
(6.148) one 448 Ntheta rudder	Ntheta	Atheta Btheta Ctheta		-7.949 -53.89 -51.48 16.139 159.43 395.63 744.54 148.76 -732.9 -2568576411134 -19744 -32906 37.879 -305.1 -1632494712138 -26160 -51497	159.43 395.63 744.54 1227.2 -11134 -19744 -32906 -52200 -12138 -26160 -51 <i>4</i> 97 -94852	1227.2 -52200 -94852	1865.6 2649.6 -79515 -1E+05 -2E+05 -3E+05	3591.0 -2E+05 -4E+05	4715.2 -2E+05 -6E+05
(6.150) one 448 aileron	Npsi	Apsi Bpsi Cpsi Opsi		-24.34 -226.9 -300.5 -204.5 83.730 619.69 -212.7 -465.0 -117218091648. 772.62 -6.546 -20.58 -81.74 -194.7 -303.6 -193.1 -61.17 192.03 1392.7 4686.3 11729. 25074.	619.69 772.62 -193.1 25074.	2771.9 24540. 3438.4 85886.	4628.1 7126.2 56416. 113111 10072. 24116. 145019 235669	10472. 209064 51496. 373938	15029. 366438 102124 582112
(6, 150) one 448 rudder	Npsi	Apsi Bpsi Cpsi Opsi		11.479 -99.81 -437.3 -10672083. 82.353 -401.6 -2609863621756 -0.134 -4.457 -47.98 -224.5 -741.3 22.118 -85.23 -304.6 -692.6 -1359.	35935705. 6 -46912 -88762 3 -19654424. 24414119.	-8534. -2£+05 -9162. -6639.	-12195 -16825 -3E+05 -4E+05 -17693 -32654 -10232 -15168	-22553 -7E+05 -57651 -21636	-29508 -1E+06 -99478 -30007
(6.145)one447	23	E B U O		46.875 95.072 163.68 222.45 277.67 332.01 124.46 561.08 1166.6 2019.8 3181.2 4706.1 -54.14 606.78 1637.8 3487.0 6533.0 11204106.0 ERR ERR 11344. 27909. 59574.	1	386.16.440.30 494.46 6494.1 8713.8 11450. 17663. 26544. 38491. 111939 196083 326755	494.46 548.90 11450. 14935. 38491. 54707. 326755 528831	603.57 6 19420. 2 76888. 1 841814	658.36 25310. 107377 1E+06

		0.1	m
	M=.60	-11992 NO YES	.582
	ا ح	211 NO YES	10 7
	15.55	-9422. NO YES	3.02
	№. .50	δ.	1244
	π	1727 NO YES	ក់ ច
	#45	-5538. NO YES	3.94 194
	₩.40	-4117. NO YES	0.3974 0.7920 1.1807 1.55% 1.9238 2.2662 2.5766 2.8399 3.0416 3.1244 3.0210 2.5823
	1 .35	88	9925
		929 NO YES	62 5
	M=.30	-2039. NO YES	2.% %
£	N=.25	-1425. NO YES	1.92%
WE TRANSFER FUNCTIONS (M = 0.55, W = 39,508 #, h = 1,000 ft)	M=.10 M=.15 M=.20	1.2	%SS:
H	15	-555.9 -931 ERR NO ERR YES	1 208
₹8	#	-55	1.1
UNCT10 = 39,5	₩.10	-238.1 ERR ERR	0.7920
WE TRANSFER FUNCTIONS (M = 0.55, W = 39,508	leasu M≃.05	179.73 -238.1 - NO ERR NO ERR	3974
TR98	asu l	-22	0
S S S	_		
HIR MSH-	Given	20 32E>0	
SN S		.0,E)	a.
DIRECT	Variable	E A,B,C,0,E>0 D(BC-AD)-B2E>0	
LATERAL-DIRECTIONAL AIRPLAN FLIGHT CONDITION: DASH-IN	Unit		S .
ı	_		
.6.4	9	5 44	one4
Table C.6.4	Reference	(6.84)one449	(6.104)one427
<u></u>	å	9	9

Table C.6.5 L	ATERAL- LIGHT C	LATERAL-DIRECTIONAL AIRPLANE TRANSFER FUNCTIONS FLIGHT CONDITION: MANEUVER (W = 30,220 %, n = 5,	IL ATRPLA	NE TRAN	SFER FI 0,220	TRANSFER FUNCTIONS = 30,220 #, n = 5		1,000	h = 1,000 ft, M = 0.35)	0.35)						
Reference	Uhit	Variable	Given	Measu	M=.05	M=.10	M=, 15	M=. 20	N=.25	Æ.30	M=.35	₩.4	M=, 45	M=.50	M=,55	₩.60
(6.146)one447 aileron	82	88 89 89 89		. E. → 1	0 306.86 14379. 4289.	0 453.19 4820.1 -2118.	590.53 5203.4 -1465.	0 604.22 7100.2 -749.3	0 451.37 9444.6 119.35	76.099 10860. 1302.4	-593.7 8620.6 2965.8	0 -1651. -613.7 5307.4	0 -3221. -22475 8568.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -8203. -1E+05 19402.	0 -12105 -3E+05 28185.
(6.146)one447 rudder	竖	8 8 8 8 8 8 8 8 8			1.0128 34.717 -520.7 153.00	4.0377 195.86 1788.3 -876.4	10.226 533.52 4175.0 -1657.	18.443 1183.1 9912.6 -2402.	10.226 18.443 28.866 41.631 533.52 1183.1 2264.8 3902.1 4175.0 9912.6 22373. 46323. -1657240232534274.	28.866 41.631 2264.8 3902.1 22373. 46323. -32534274.		56.828 74.538 6203.8 9321.9 86198. 151055 -55127011.	94.840 13412. 252454 -8319.	117.86 18692. 410025 -10978	143.70 25401. 652376 -13535	172.39 33844. 1E+06 -16553
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		111	-44.07 (-7419. -1969.	689.43 ERR -2985.	2309.9 ERR 239.52	2309.9 5485.9 ERR ERR 239.52 20962.	10869. ERR 83165.	19242. ERR 231227	2309.9 5485.9 10869. 19242. 31578. ERR ERR ERR ERR 239.52 20962. 83165. 231227 537892		73559. ERR 2E+06	49128. 73559. 107256 153556 ER ERR ERR ERR 1E+06 2E+06 4E+06 7E+06	153556 ERR 7E+06	217390 ERR 1E+07
(6.148)one448 Ntheta rudder	Ntheta	Atheta Btheta Ctheta		1 6 9	-13.27 257.97 64.519	-31.35 -3083. -1500.	0.1491 -8745. -6367.	101.99 -16901 -16342	0.1491 101.99 291.05 589.35 -874516901 -28606 -45087 -636716342 -34577 -65257	589.35 -45087 -65257	1020.6 -67812 -1E+05	1020.6 1609.7 -67812 -98558 -1E+05 -2E+05		2382.7 3336.0 -1E+05 -2E+05 -3E+05 -5E+05	3336.0 4486.4 -2E+05 -3E+05 -5E+05 -7E+05	5863.6 -3E+05 -1E+06
(6.150) one 448 aileron	Mpsi	Apsi Bpsi Cpsi Opsi		1 -1 + 1	-305.8 · -14450 · -542.4 · -980.0 ·	-456.3 -4768. -353.2 -722.8	-597.9 -4910. -520.1 207.24	-617.8 -6499. -935.3 3191.7	-597.9 -617.8 -474.3 -491064998413. -520.1 -935.3 -1619. 207.24 3191.7 9760.7	-112.9 -9207. -2419. 22378.	536.79 -6053. -2700. 44429.	1566.3 4526.3 -1332. 80444.	3097.5 28372. 3946.0 137186	5171.9 73617. 17028. 224383	7956.8 152917 44520. 357668	11762. 285298 97343. 558606
(6, 150) one448 rudder	Npsi	Apsi Bpsi Cpsi Opsi		നഥിന	3.8036 · 510.15 · -5.743 · 39.242 ·	-105.5 -1837. -24.88 -418.1	-418.3 -4339. -90.70 -1182.	-418.3 -1000. -433910308 -90.70 -326.4 -11822275.	-10001946. -10308 -23196 -326.4 -1013. -22753848.	-3355. -47872 -2642. -6049.	-5328. -88909 -5914. -9098.	-27971. -2E+05 -12211 -13310		-11394 -15724 -3£+05 -4£+05 -23517 -43282 -18851 -26155	-21085 -7E+05 -76199 -35366	-27597 -1E+06 -1E+05 -46875
(6, 145) one 447	23	E 80 U C		4-11	49.203 1884.1 -12.31 -1048.	97.946 2241.5 2068.8 ERR	165.01 1987.3 2638.5 ERR	222.51 2431.6 3896.5 13707.	165.01 222.51 277.53 1987.3 2431.6 3423.5 2638.5 3896.5 635.7 ERR 13707. 29293.	331.98 4888.6 10329. 59226.	97.946 165.01 222.51 277.53 331.98 386.32 2241.5 1987.3 2431.6 3423.5 4888.6 6672.2 2068.8 2638.5 3896.5 6335.7 10329. 16001. ERR 13707. 29293. 59226. 108850		440.66 495.03 8928.0 11734. 23956. 34822. 188787 313292	549.69 15330. 49799. 506387	604.57 19973. 70554. 806435	659.58 26080. 99400. 1E+06

	Q	m	œ.
	M=.60	-1787 NO YES	₹
	M=.55	- 26	124
	₩.	-145 RB YES	0.22
	. 50	068	1525
	弄	- 85 SES] = -
	M=.40 M=.45 M=.50	-955111830 -14595 -17873 NO NO NO NO YES YES YES	1.9933
		-7629. NO YES	2.0295
	I =.35	-6036. MO YES	1.9387
).35)	M=.30	369.93 -980.1 -183926573572468760367629. NO ERR ERR NO NO NO NO NO NO ERR ERR YES YES YES YES	0.3270 0.6493 0.9616 1.2574 1.5281 1.7613 1.9387 2.0295 1.9933 1.6751 0.2221
WE TRANSFER FUNCTIONS (W = 30,220 #, n = 5, h = 1,000 ft, M = 0.35)	IF. 25	3572 0 N	. 5281
,000 ft	M=.20	2657 3 N 55 Y	.2574 1
= 1		28. Z.	191
5. h	보	-183 E	6.0 8.0
UNCTION II, n =	M=.10	-980.1 ERR ERR	0.6493
LATERAL-DIRECTIONAL AIRPLANE TRANSFER FUNCTIONS FLIGHT CONDITION: MANEUMER (W = 30,220 #, n = 5,	Measu M=.05 M=.10 M=.15	69.93 · 10 10), 3270 (
E TRAN	easu	60 22	
YE BY		-	
AIR	6i ven	×0 ¥2€>0	
10. NO.		,0,E)	a.
IRECT	Variable	E R,B,C,0,E>0 D(BC-A0)-B2E>0	Mh S.P.
日 日 日 日 日 日			-
LATE FLIG	Unit		
	_	4	e427
C.6	euce	Done	<u>&</u>
Table C.6.5	Reference	(6.84)one449	(6.104) one 427

Table C.6.6 LI	ATERAL-I Light Co	LATERAL-DIRECTIONAL AIRPLANE FLIGHT CONDITION: DASH-OUT (ANSFER 20,932	TRANSFER FUNCTIONS = 20,932 &, h = 1	45 1,000 f	TRANSFER FUNCTIONS W = 20,932 %, h = 1,000 ft, M = 0.55)	0.55)							
Reference	Uhit	Variable	Given Measu	₩.05		M=.10 M=.15	M=.20		1.25 1≝.30	M=,35	五.4	M=.45	№.50	M=, 55	M=.60
(6.146)one447 aileron	92	88 88 88 88		0 57.855 85.514 -67.58		0 130.26 1052.9 247.51	0 0 0 0 0 0 0 0 0 0 0 0 0 45616813. 438.90 1052.9 1595.1 1336.4 2404.8 3989.2 6267.6 9467.9 13922.	0 -307.7 1380.5 1336.4	0 -830.7 -992.3 2404.8	0 -1646. -8037. 3989.2	0 -2849. -23684 6267.6	0 -4561. -54078 9467.9		0 -9766. -2E+05 20122.	0 -13731 -4€+05 28760.
(6.146)one447 rudder	문	28888		1.5476 9.1138 3.5189 -17.86	6.1524 139.05 442.33 -146.2	14.879 491.51 2475.6 -315.6		41.628 2267.5 20097. -929.4	80.064 3945.5 43427. -1447.		107.65 9507.4 145645 -3080.	137.02 13734. 244690 -4268.	170.34 19240. 398681 -5742.	207.74 26316. 635611 -7532.	249.27 35356. 1E+06 -9681.
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		37.076 -114.9 -12.19	630.52 ERR 824.53	2354.2 ERR 7153.2	2354.2 5692.8 11331. ERR ERR ERR 7153.2 30973. 96375.	11331. ERR 96375.	20090. ERR 247204	32987. ERR 555229	51330. ERR 1E+06	76860. ERR 2E+06	112064 160426 227094 ER ER ER 4E+06 7E+06 1E+07	160426 ERR 7E+06	227094 ERR 1E+07
(6.148) one 448 Ntheta rudder		Atheta Btheta Ctheta		-12.71 -31.96 -5.732	-8.666 -517.6 -222.8	48.482 -1674. -1098.	181.65 414.37 -39818205. -35419291.		772.91 -15334 -21090	1284.8 1978.6 -26599 -43489 -43143 -81771		2884.4 4005.0 -67785 -1E+05 -1E+05 -2E+05	4005.0 -1E+05 -2E+05	5362.4 -1E+05 -4E+05	6990.1 -2E+05 -6E+05
(6.150)ome448 aileron	Npsi	Apsi Bpsi Cpsi Opsi		-57.41 -70.12 -3.605 -3.589	-138.6 -276.4 -23.31 240.40		-4.400 -800.0 -222.0 4448.1		788.50 3170.1 174.11 23634.	1575.4 11442. 2179.9 45488.	2735.4 28914. 7829.3 81067.	4388.4 62026. 20962. 136967	6559.0 120159 48273. 222710	9401.8 217789 101001 353587	13215. 377196 197976 550700
(6. 150) one 448 rudder	Npsi.	Apsi Bpsi Cpsi Opsi		-5.536 -11.06 -0.205 -2.763	-109.8 -461.8 -9.717 -60.69	-396.9 -2563. -90.63 -199.4	-936.2 -8266. -409.9 -482.1		-3134. -44862 -3563. -1914.	-4981. -85039 -8026. -3356.	-7456. -2E+05 -16643 -5565.	-10664 -3£+05 -32183 -8771.	-14725 -4E+05 -59474 -13208	-19755 -7E+05 -1E+05 -19061	-25868 -1E+06 -2E+05 -26682
(6.145)one447	23	E B U O		52.075 133.95 69.723 24.593	103.37 544.13 500.62 ERR	166.30 1187.8 1444.7 ERR	222. 42 2106. 2 3226. 8 10570.	277.22 331.77 3359.8 5007.0 6198.3 10779. 26088. 55900.	331.77 5007.0 10779. 55900.	386.28 440.83 6940.3 9341.7 17125. 25881. 105325 184856	440.83 9341.7 25881. 184856	495.40 12304. 37702. 308470	550.26 16080. 53825. 499805	605.36 20942. 75983. 796435	660.57 27330. 106603 1E+06

	M=.60	-10483 NO YES	ER
		210 NO YES	RR R
	N=.55	-8152. NO YES	
	M=.50	-6213. NO YES	₹
	产.45	4646. NO YES	&
	₩.40	-3375. NO YES	E E E
	₩.35	-2376. NO YES	0.6180
	₩:.30	-1603. NO YES	0.8481
0.55)	M=.25	-1032. NO YES	0.2173 0.4250 0.6121 0.7637 0.8567 0.8481 0.6180
t, M =	M=.20	-632.6 NO YES	0.7637
5 1,000 f	M=.10 M=.15	-356.9 -632 ERR NO ERR YES	0.6121
UNCTION I, h =	M=.10	-167.6 ERR ERR	0.4250
TRANSFER FUNCTIONS W = 20,932 #, h = 1	M≃.05	-11.81 -167.6 -356.9 NO ERR ERR YES ERR ERR	0.2173
NE TRA	Measu		_
RIRPLI	6iven	>0 82E>0	
LATERAL-DIRECTIONAL AIRPLANE TRANSFER FUNCTIONS FLIGHT CONDITION: DASH-OUT (W = 20,932 #, h = 1,000 ft, M = 0.55)	Variable	E A,B,C,0,E>0 D(BC-A0)-B2E>0	다. 9.2
L-DIR		Э,	
LATER FLIGH	Unit		s/r
Table C.6.6	Reference	(6.84)one449	(6.104)one427
Tab	Ref	(6.	99

Table C.6.7 LI	ATERAL-	LATERAL-DIRECTIONAL AIRPLANE FLIGHT CONDITION: LANDING (W	AIRPLAN-	1	SFER FI,	TRANSFER FUNCTIONS = 20,932 #, h = SE	SERLEVEL	TRANSFER FUNCTIONS = 20,932 #, h = SERLEVEL, M = 0.15)	.15)							
Reference	Unit	Variable	6iven M	Measu	M=.05		M=.10 M=.15	Æ.20		1.25 1E.30		N=.35 N=.40	₩:.45	M=.50	M=,55	M=.60
(6.146)one447 aileron	g	8888		ம்க⊤	54.981 1 91.292 4 67.46	0 113.52 469.85 42.924	0 62.112 1078.5 275.09	0 -134.3 1595.5 715.69	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 -2192. -9331. 4359.9	0 0 0 0 0 0 0 0 0 0 0 0 413.52 62.112 -134.3 -527.0 -1184219236635744852212219 -17228 469.85 1078.5 1595.5 1263.5 -1459933126668 -60214 -1E+05 -2E+05 -4E+05 42.924 275.09 715.69 1462.3 2629.0 4359.9 6849.2 10346. 15213. 21989. 31427.	0 -5744. -60214 10346.	0 -8522. -1E+05 15213.	0 0 -85212219 -1E+05 -2E+05 15213. 21989.	0 -17228 -4E+05 31427.
(6.146)one447 rudder	9	88 88 88 68 88 88		⊶നഗ്	1.5802 (9.7948) 5.2225 -21.76	6.6450 157.91 505.38 -163.2		27.510 1290.9 8759.1 -606.9	42.966 2524.1 22010. -1003.		84.640 7016.9 90183. -2334.	111.07 10582. 159572 -3345.	111.07 141.38 10582. 15275. 159572 268129 -33454640.	175.77 21366. 436921 -6246.	214.36 29160. 696635 -8199.	257.21 39062. 1E+06 -10542
(6.148)one448 Ntheta aileron	Ntheta	Atheta Btheta Ctheta		411	43.304 (-114.7) -10.08	641.67 ERR 954.66	2281.8 ERR 7942.9	5466.0 ERR 34144.	43.304 641.67 2281.8 5466.0 10852, 19225, 31555. -114.7 ERR ERR ERR ERR ERR -10.08 954.66 7942.9 34144, 106076 271988 610861	19225. ERR 271988		49093. 73504. ERR ERR 1E+06 2E+06	73504. ERR 2E+06	107174 ERR 4E+06	107174 153436 217217 ERR ERR ERR 4E+06 7E+06 1E+07	217217 ERR 1E+07
(6.148) one 448 Ntheta rudder	Ntheta	Atheta Btheta Ctheta		1 1 1	-14.41 - -39.03 - -7.329 -	-20.12 17.241 -578.7 -1810. -250.8 -1196.			286.98 -8879. -10127	558.08 -16634 -23038	286. 98 558. 08 948. 17 -887916634 -28909 -10127 -23038 -47209	1479.5 -47336 -89595	2175.4 -73863 -2E+05		4046.6 -2E+05 -4E+05	5261.4 -2E+05 -6E+05
(6. 150) one 448 aileron	Npsi	Apsi Bpsi Cpsi Opsi		1 1 1 1	-54.44 -72.47 -3.798 -2.234	-113.4 -303.3 -26.90 277.16	-113.4 -64.37 126.74 -303.3 -666.8 -810.7 -26.90 -107.7 -246.0 277.16 1518.8 4885.4		509.86 89.014 -299.8 12129.	3673.9 219.74 25907.	2137.2 12856. 2507.2 49862.	3574.3 32179. 8930.2 88865.	5608.0 68725. 23842. 150151	8321.6 132834 54837. 244157	11933. 240442 114654 387646	16824. 416075 224647 603753
(6. 150) one448 rudder	Nps i	Apsi Bpsi Cpsi Opsi		1111	-5.636 - -13.73 - -0.228 - -3.614 -	-128.5 -530.0 -11.56 -67.99	-454.5 -1071. -28289065. -103.6 -465.1 -216.1 -521.6	_	-2084. -22761 -1523. -1097.	-3598. -49146 -4035. -2080.	-5724. -93177 -9089. -3654.	-8575. -2E+05 -18848 -6067.	-857512270 -16946 -2E+05 -3E+05 -5E+05 -18848 -36450 -67363 -6067957014423	-16946 -5E+05 -67363 -14423	-22735 -7E+05 -1E+05 -20824	-29767 -1E+06 -2E+05 -29161
(6.145)one447	8	E 80 CO		ro ⊶ co m	51.455 150.35 80.841 30.982	108.04 539.70 550.56 ERR		222.48 2032.8 3526.2 11568.	167.45.222.48 276.89 331.26 1150.0 2032.8 3240.7 4827.6 1574.6 3526.2 6786.1 11812. ERR 11568. 28553. 61207.	331.26 4827.6 11812. 61207.	385.68 6690.0 18778. 115366	440.14 9001.7 28379. 202538	494.65 11850. 41326. 338054	549.46 15478. 58948. 547831	604.49 20144. 83116. 873068	659.62 26267. 116434 1E+06

	M=.60	-11415 NO YES	E. C.
TRANSFER FUNCTIONS = 20,932 #, h = SEALEVEL, M = 0.15)	M=.55	-8873. NO YES	
	M=.50	-6759. No Yes	ER ER
	M=.45	-5049. NO YES	ER ER
	M=. 40	-3664. NO YES	ER.
	N=,35	-16.93 -187.0 -385.1 -681.3 -1114173425763664504967598873. NO ERR ERR NO NO NO NO NO NO NO NO YES YES YES YES YES YES YES YES YES YES YES	0.5812
	N=.30	-1734. NO YES	0.2043 0.3997 0.5757 0.7183 0.8057 0.7976 0.5812
	H15 M20 M25	-1114. NO YES	0.8057
	M=.20	-681.3 NO YES	0.7183
	Æ.15	-385.1 -681 ERR NO ERR YES	0.5757
UNCTION , h = S	Æ.10	-187.0 ERR ERR	0.3997
NSFER F 0,932	Measu M=.05 M=.10	-16.93 NO YES	0. 2043
	Measu		
L RIRPL	Given	>0 B2E>0	
LATERAL-DIRECTIONAL AIRPLANE FLIGHT CONDITION: LANDING (W	Variable	E A,B,C,D,E>0 D(BC-AD)-B2E>0	Fn S.P.
TERAL-DI	Unit V		* * * * * * * * * * * * * * * * * * *
Table C.6.7 LM FLI	Reference	(6.84) one 449	(6.104)one427
<u> </u>	œ	=======================================	<u> </u>

APPENDIX D

The purpose of this appendix is to show the calculations for the wing component sizing and the flutter analysis. Also presented is the method used for the flutter analysis, which was formulated by Dr. James Locke of the University of Kansas.

Table of Contents

Wing Component Sizing	D1
Flutter of cantilever aircraft wing	D13
Flutter analysis of the wing (Good Aircraft)	D21

22-144

AMPAD.

Purpose: Site spar caps a smyers so that All members to load, yers so that

```
Location: (Frac of C) Crel to Glasme X Z
Item
                    (,25,,067)
(,25,,051)
(-,245,,045)
                    -.245, -.025)
                       15, 1082)
                      105, 10847
ye baloa
                     -,05,,078)
                      -,15, ,065 )
                       115, -1062
                     -,05,-,063)
```


Force

-,15, -,044)

,067c FA + .051c FB + .045c FC + ,025c FD + .082c Fa + 1084cFb + 1078cFc + 106ScFd + 106ZcFe + 1063cFp + ,056c Fg +,044c Fh = MX

```
FB = (,051/.067) FA
                       = .761 FA
FC = (.045/.067) FA
                       = ,672 FA
FO = (1025/1067) FA
                          1373 FA
                       =
Fa = (1082/1067)FA
                         1,224 FA
   = (1084 (1067) FA
                         1,254FA
Fb
                       =
                          1.164 FA
    = (,078/,067) FA
Fc
                       =
Fd = (1065/1.067)FA
                       =
                          ,970FA
   = (,0621,067)FA
                       -
                          1925FA
FF = (1063/, 067) FA
                           1,940 FA
                       · =
   = (,056/,067)FA
                       =
   = (.044/.067)FA
                          1657 FA
```

(Tension) [compt) (Tens) (compr) (compr) (rens)

(,067c + ,039c +,030c + ,009c + ,100c + ,105c +,091c +,063c +,057c +,059c + ,047c+ ,029c)fall=mx

.696CFA = MX

ROOT: 29,968 Kipin - 4,513 Kipin 187.2"

B.4:240' 7,954 Kipin - 1,192 Kipin 128.4"

B.L.:360 1,881 Kipin - 269 Kipin 104.4"

LOADS DUE TO BENDING MOMENTS! (Kips)

FA 19,7 FCO 0023 70000 33 10 32 109 Fa FFOF 104 268 30 25 223 アアアア 16 公共 82 213 216 151

,25eFA +125cFB +1245eFC +1245eFD +15eFa HOSeFb HOSeFe +115cFd +115eFe TOScFq +105eFq +115cFA

=MZ FA 1.98 FA UPT COFFEE FB= FA ,245/,25 FA = 1,98FA 1245/125 FA FO 2 ,60 FA .15/125 FA Fa = ,05/.25 FA 1,20 FA Fb = .05/,25 FA L,20 FA Fc = [1.60 FA Fe 115/125 FA 115/.25/5A 105/.25 FA 1,20 FA = is the sea L ROFA 105/25 FA = 160 FA 115/125 FA

D2

(,25c+,25c+,24c+,24c+,09c+,010c +,016e +,09e +,09e +,010e +,010e+,090c) FA=MZ

1.38cFA =- MZ

	LOADS 1	DUETO Z-A	xis moments	t: CICIPS
	ROOT	240	360	
1879 28 28 63 64 64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ファファクラックのある	776603300330	7,499,441,441	COFFOCFFOCFF
	TOTAL	LGAPS on	members C	KIPS)
	ROOT	240	360	
FREDERIC FER	247.5 157.5 137.8 103.5 291.5 291.5 202.5 212.5 195.5	95,7 61,3 53,9,6 113,7 92,7 92,7 92,7 92,7 92,7 92,7 92,7 92	27.78191333939691	こかし 十

102S

D4

200 SHEETS

skoot Area =

196,46

AMPAD.

Paul Darah | Spar Sitis TOTAL WING Spare Stringer Weight = <u>8294</u> WITH Con Ventional AC-2024 = 110516 WT SAMMS = 276 Rb AA AA ABAC ,61 AA _ SG AA AO 140 AA 2 Aa 1.07 A. Ac 126 AA 178 AA 127 AA Ad 7 176 AA Ix = EA(ZZ) ,0045e2 AA + ,0076 CZAB + ,0020 CZ AC + ,0006 CZAO +,0067 c2Aa +,0071 c2Ab +.0061 c2Ac +,0042c2Ad +,0038cZAe + ,0040cZAf + ,0031cZAg + ,0019cZAL =Ix AACY.0045 + ,0016 + ,0011 + ,0002 +,0079 + ,0084 +,0030 +,0033 +,0024 +,0065 + ,0036 +,0012) = Tx ,0036 . 0437 AAC2 = IX $T_z = \xi A(x^2)$,0625 c7AA + .0625 c7AB + .06 C7AC + .06 c7AD

.0225 Aar + .0625e AB + .06 C Ac + .06 C AD

+ .0225 Aar + .0025 Abe + .0025 Ac = +.0225 Aje + .0225 Age + .0225

. 2455 c2AA = IZ

IXZ= EA(ZXX)

,0168 AACZ - ,0128 ABCZ - ,0110 ACCZ + ,0061 ADCZ +,0123 Aac2 + ,004 Abc2 - ,0039 Acc2 -,0098 Ajc2 - ,0098 Aecz - ,0032 Afcz + ,0028 Agcz +,0066 Ancz

AACZ(10168 - 10078 - 1006Z + 100Z4 +.0145 + .0047 -,0042 -,0084 -,0076 -,0076 +,0071 +,0041) =IXZ ,0078 AACT = IXZ

360 ROOT 240 TIP 7,274 in4 1,326 in4 257 in4 25 in4 IX 40,865in4 7,447in4 1,445in4 143in4 IZ Ixz 1,298 in4 237 in4 46 in4 4,5 in4

> NOTE: TIP ched (B.L. SOI - Does not include The Tip

= SC-281

Root 240 3	60
	274978614094

AMPAD

7

200 SHEETS

22-144

TOTAL: 71/26
Inertial Relief SAVES: 14,5%

D9

90A2 + 8z C2 + 8iB2 + 93D2 = 7M8c = 8z = 8i = 83

Tofin Brea B:

ARRA B'

, 087 .089 .07

.078

067e

AREA B'=

(,078,-,065)(,102) + (,078)(,10c) + (,084;,078c)(,10c)

+(1087)(10) + (1084-1082)(10c) +(1067-1065)(10c)

+(.082c-.067c)(.10e) = 1018 ez

Thus Break = ((1065(15)) +1018) = 10505 c2

(-,065+,045),10

= 1049502

D10

Paul Danah

TOfind mea C.

and David

B. L,	T, M c	90
Root	4,712 kipi in 187.2"	80 .5104 kiplin
240	4,415kpin 128,49	1,02 Kiplin
360	2, 530 Kipin 104,411	.88 KIPlik

Added to roision is worned load

ADDOMEMENTE DETQUE BOX:

$$FZ = ((.095 + .025) + (.067 + .051)) cgz + (.089 - .067) cgi$$

 $FZ = .188cqz + .029cgi$
 $FX = .8+C$

Flutter of cantilever aircraft wing J. Locke

w(x,t) bending deflection of elostic axis $\theta(x,t)$ torsional rotation about elostic axis

O(x,t) vertical wing loading M(x,t) twisting moment loading

* inertia axis or
mass center (IA)
• elastic axis (EA)

yo distance between
IA * EA

wing cross section of thickness dx

The vertical velocity of any point on the

 $w(x,t) = \dot{w}(x,t) + y \dot{\theta}(x,t)$

The Kinetic energy for a thickness dx is

$$dT = \int_{A} \left(\frac{1}{2}\rho N^{2}\right) dA$$

$$A - cross sectional$$

$$wing orea$$

$$\rho - mass density$$

$$dT = \int_{A}^{\frac{1}{2}} \rho \left(\dot{w} + y \dot{\theta} \right)^{2} dA$$

$$= \frac{1}{2} \dot{w}^{2} \int_{A}^{A} \rho dA + \frac{1}{2} \dot{\theta}^{2} \int_{A}^{2} y^{2} \rho dA + \dot{w} \dot{\theta} \int_{A}^{2} y \rho dA$$

$$= \frac{1}{2} \dot{w}^{2} \int_{A}^{A} \rho dA + \frac{1}{2} \dot{\theta}^{2} \int_{A}^{2} y^{2} \rho dA + \dot{w} \dot{\theta} \int_{A}^{2} y \rho dA$$

$$= \frac{1}{2} \dot{w}^{2} \int_{A}^{A} \rho dA + \frac{1}{2} \dot{\theta}^{2} \int_{A}^{2} y^{2} \rho dA + \dot{w} \dot{\theta} \int_{A}^{2} y \rho dA$$

m-mass density per unit length of wing Io-mass moment of inertia of wing about EA

The total kinetic energy for the wing is

$$T = \int_{0}^{L} dT = \frac{1}{2} \int_{0}^{L} (m\dot{w}^{2} + I_{0}\dot{\theta}^{2} + 2y_{0}m\dot{w}\dot{\theta}) dx . \quad (1)$$

The bending strain energy is

$$U_{b} = \frac{1}{2} \int_{0}^{L} E I(w_{xx})^{2} dx ,$$

$$W_{xx} = \frac{\partial^{2} w}{\partial x^{2}}$$
(2)

and the torsional strain energy is

$$U_{t} = \frac{1}{2} \int_{0}^{2} G \mathcal{J} \left(\Theta_{,x} \right)^{2} dx . \tag{3}$$

$$\Psi_{,x} = \frac{\partial \Theta}{\partial x}$$

GJ torsional stiffness, EI bending stiffness

04

D15

The wing can be modeled as a two-degree-of-freedom system by assuming the following type of solution

$$w(x,t) = g_1(t) \ \phi(x) = g_1 \phi$$

$$\theta(x,t) = g_2(t) \ \Psi(x) = g_2 \Psi$$
(4)

8, \$ 82 generalized coordinates

\$\phi\$ bending mode shape for contilever beam

\$\psi\$ torsional mode shape for contilever beam

The equations of motion for a system with generalized coordinates can be found using Lagrange's equations

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{g}_i} \right) + \frac{\partial U}{\partial g_i} = Q_i \quad . \tag{5}$$

T kinetic energy

U potential energy

Qi generalized force for ith degree - of - freet

Substituting Eq. (4) into Eqs. (1)-(3)

$$T = \frac{1}{2} \dot{g}_{1}^{2} \underbrace{\int_{0}^{L} m \, \varphi^{2} \, dx}_{m_{11}} + \frac{1}{2} \dot{g}_{2}^{2} \underbrace{\int_{0}^{L} I_{0} \, \Psi^{2} \, dx}_{m_{22}} + \dot{g}_{1} \dot{g}_{2} \underbrace{\int_{0}^{L} Y_{0} \, m \, \varphi \, \Psi}_{m_{12}} dx$$

$$= \frac{1}{2} m_{11} \dot{g}_{1}^{2} + \frac{1}{2} m_{22} \dot{g}_{2}^{2} + \dot{g}_{1} \dot{g}_{2} m_{12}$$
 (6)

$$U = \frac{1}{2} g_1^2 \int_0^L E \int_{XX}^L dX + \frac{1}{2} g_2^2 \int_0^L G \int_{XX}^L dX$$

$$= \frac{1}{2} k_{11} g_1^2 + \frac{1}{2} k_{22} g_2^2 , \qquad (7)$$

Substituting Eqs. (6) \$ (7) into Eq. (5), the equations of motion are given by

$$\begin{bmatrix} k_{11} & 0 \\ 0 & k_{22} \end{bmatrix} \begin{Bmatrix} g_1 \\ g_2 \end{Bmatrix} + \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \end{bmatrix} \begin{Bmatrix} \dot{g}_1 \\ \dot{g}_2 \end{Bmatrix} = \begin{Bmatrix} -\dot{Q}_1 \\ \dot{Q}_2 \end{Bmatrix}$$

or
$$[K] \{ g \} + [M] \{ g \} = \{ Q \},$$
 (8)

where the generalized forces: Q, \$ Qz are given by

$$Q_{1} = \int_{0}^{L} Q \, \varphi \, dx \qquad (9)$$

$$Q_{2} = \int_{0}^{L} M \Psi \, dx \, .$$

Both QAM are functions of x\$t, hence

Q1\$Q2 will be functions of time.

Generally speaking, Q\$M depend on

the speed of the cir relative to the wing u

as well as w, \(\theta\), \$\dagger\$ at the force matrix

can be written in the form

$$\{Q_{3}^{2} = -u^{2} [H] \{g_{3}^{2} - u[L] \{g_{3}^{2}\}, \qquad (10)$$

Substituting Eq. (10) into Eq.(8)

$$[K][g] + [M][g] = -u^2[H][g] - u[L][g]$$
. (11)

Assuming a time solution of the form

$$\{g\} = \{A\} e^{\lambda t} \Rightarrow \{g\} = \lambda \{A\} e^{\lambda t} = \lambda \{g\}$$

 $\{g\} = \lambda^2 \{A\} e^{\lambda t} = \lambda^2 \{g\}$,

and substituting into Eq. (11) we obtain

$$[[K] + u^{2}[H] + \lambda u[L] + \lambda^{2}[M]] \{g\} = \{0\}, \quad (12)$$

The eigenvalue α is a continuous function of the cir speed u. For u=0 the above problem reduces to

$$[K] \{g\} = -\lambda^2 [M] \{g\}.$$

Since [K] \$ [M] are positive definite symmetrices, $-\lambda^2$ must be real \$ positive. Hence, $\lambda = \pm i\omega$, indicating free oscillatory vibration with frequency ω , But, when $u \neq 0$ λ is no longer pure imaginary but complex $\lambda = \alpha + i\omega$. For damped stable motion α must be negative. As α increases, α can be an appearable at the motion is unstable.

When $\alpha = 0$ \$\frac{4}{\omega} \omega \pm to the wing is said to be in critical flutter condition. The critical flutter speed u_{cR} is the lowest value of u for which d = 0.

To compute u_{CR} , $\alpha = 0$. Thus, $\beta = i\omega$ \neq substituting into E_{3} . (12)

Set both the imaginary and real parts of the determinant equal to zero. This will result in two equations with two unknowns $\omega \neq u$. Ucr is the smallest positive value of u.

* Alternative solution for UCR

Start with Eq. (12). For a given value of u compute

$$\left|\left[\left[K\right] + u^{2}\left[H\right] + \lambda u\left[L\right] + \lambda^{2}\left[M\right]\right]\right| = 0$$

and solve for $\lambda = \alpha + i \omega$. Start with u = 0 and increment u gradually, Plot u vs. α .

 U_{CR} occurs at d = 0.

*Effect of additional masses (i.e., external stores, fuel, etc.)

mpod - total mass of pod Ipod - mass moment of inertia of pod about EA

y - distance between moss center of pod

 $T_{pod} = \frac{1}{2} m_{pod} \dot{w}^2(\bar{x}) + \frac{1}{2} I_{pod} \dot{\theta}^2(\bar{x}) + m_{pod} \bar{y} \dot{w}(\bar{x}) \dot{\theta}(\bar{x})$

but
$$\dot{\mathcal{N}}(\bar{x}) = \dot{q}, \, \phi(\bar{x})$$

 $\dot{\theta}(\bar{x}) = \dot{q}_2 \Psi(\bar{x})$

 $T_{pod} = \frac{1}{2} m_{pod} \phi^2(\overline{x}) \dot{g}_1^2 + \frac{1}{2} I_{pod} \Psi^2(\overline{x}) \dot{g}_2^2 + m_{pod} \overline{y} \phi(\overline{x}) \Psi(\overline{x}) \dot{g}_1^2$

Now the additional terms in the equations of motion can be found by letting T = Tpod and using Eq. (5). Note that only the mass motrix [M] will change. D19 * Beam mode shapes

$$\phi(x) = \cosh \frac{\partial x}{L} - \cos \frac{\partial x}{L} - \sigma(\sinh \frac{\partial x}{L} - \sin \frac{\partial x}{L}).$$

$$\lambda = 1.87510407$$
 $\tau = .734095514$

$$\Psi(x) = \sin \frac{\pi x}{2L}$$

References

- 1. L. Meirovitch, "Computational Methods in Structural Dynamics"
- 2. Blevins, "Formulas for Natural Frequency
 ond Mode Shape"
- Note: To account for the variation of mass and stiffness along the wing, break the wing up into several pieces and use a verage values for each segment. For instance, say the wing is divided into 4 pieces of equal length, then

$$\int_{0}^{L} m \, \phi^{2} \, dx \stackrel{.}{=} m_{1} \int_{0}^{4/4} \phi^{2} \, dx + m_{2} \int_{4/4}^{4/2} \phi^{2} dx + m_{3} \int_{4/4}^{4} \phi^{2} dx + m_{4} \int_{24/4}^{4} \phi^{2} dx .$$

m, - my are the average mass per unit length for D20 each seament.

Flutter Analysis of the wing (Good Aircraft)

From the formulation of Dr. Locke, University of Kansas:

$$T = \frac{1}{2} \frac{1}{8!^2} \int_{0}^{1} m \phi^2 dx + \frac{1}{2} \frac{1}{8^2} \int_{0}^{1} \frac{1}{9!} \frac{4}{9!} \frac{1}{8!} \frac{1}{8!} \int_{0}^{1} \frac{1}{9!} \frac{1}{9!} \frac{1}{8!} \frac{1}{8!}$$

$$U = \frac{1}{2} g_1^2 \int_0^L EI \phi_{,xx}^2 dx + \frac{1}{2} g_2^2 \int_0^L GJ \Psi_{,x}^2 dx$$

$$K_{11}$$

where : $\phi(x) = \cosh\left(\frac{1.875x}{L}\right) - \cos\left(\frac{1.875x}{L}\right) - .7341\left[\sinh\left(\frac{1.875x}{L}\right) + \sin\left(\frac{1.875x}{L}\right)\right]$

The wing will be broken down into 8 segments and the integrations will be carried out for each of the segments. The segments arei

The computer code, MATHCAD, will be used to perform the numerical integration.

In matrix form:

$$\begin{bmatrix} K_{11} & O \\ O & K_{22} \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} + \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} \ddot{g}_1 \\ \ddot{g}_2 \end{bmatrix} = \begin{bmatrix} -Q_1 \\ Q_2 \end{bmatrix} = \underline{Q}$$

where :

Q = Generalized Lift

Qz = Generalized Moment

Q, (or the perturbed lift) results from motion induced angle of attack. Let:

w(x,t) = bending deflection of the elastic axis $\Theta(x,t)$ = torsional rotation about the elastic axis

The vertical velocity of some point on the wing cross section ly units from the elastic axis) is:

Vertical Velocity = $v = \dot{w} + y \dot{\theta}$

The induced angle of attack is:

$$\alpha_{induced} = -\frac{V}{U} = -\frac{(\dot{w} + y\dot{\theta})}{U}$$

if v is small compared to U.

$$Q_1 = \overline{g} \Delta C_L \leq \Delta C_L \leq \Delta C_L = C_{L_X} (\alpha_{induced} + \Theta) = C_{L_X} (-\underline{\dot{\omega}} - \underline{\dot{\gamma}} \dot{\Theta} + \Theta)$$

For a segment of the wing:

$$Q_{segment} = \bar{q} \int_{x_{i}}^{x_{i}} c(x) c_{\ell_{x}}(x) \left[-\frac{\dot{\omega} - \dot{\gamma} \dot{\theta}}{\dot{\theta}} + \dot{\theta} \right] dx$$

But: $\omega(x,t) = \varphi(x) g_1(t) \qquad \dot{\omega} = \frac{\partial \omega}{\partial t} = \varphi(x) \dot{g}_1(t)$ $\dot{\theta}(x,t) = \Psi(x) g_1(t) \qquad \dot{\theta} = \frac{\partial \theta}{\partial t} = \Psi(x) \dot{g}_2(t)$

Substituting into the equation:

Assuming that $C_{\ell_{\mathcal{K}}}(k) = constant = C_{\ell_{\mathcal{K}}}$ $Q_{1} = \frac{1}{2} p U^{2} C_{\ell_{\mathcal{K}}} \int_{X_{1}}^{X_{2}} C(x) \Psi(x) dx \quad g_{2}(t) + \frac{1}{2} p U C_{\ell_{\mathcal{K}}} \int_{X_{1}}^{X_{2}} C(x) \varphi(x) dx \quad \dot{g}_{1}(t) + \frac{1}{2} p U C_{\ell_{\mathcal{K}}} \int_{X_{1}}^{X_{2}} C(x) \Psi(x) dx \quad \dot{g}_{2}(t)$

Using a similar procedure, one can obtain: $Q_{z_{segment}} = {}^{1/z} g U^{2} C_{m_{X}} Z \int_{X_{i}}^{X_{z}} c(x) \Psi(x) dx g_{z}(t) + \\
- {}^{1/z} g U C_{m_{X}} Z \int_{X_{i}}^{X_{z}} c(x) \varphi(x) dx g_{z}(t) + \\
- {}^{1/z} g U C_{m_{X}} Z \int_{X_{i}}^{X_{z}} c(x) y \Psi(x) dx g_{z}(t)$

But,

M = L · moment arm

g Cm & S = g CL S · moment arm

Cm & = CL · moment arm

Cm & = CL · moment arm

Cm & = CR · moment arm

moment arm is the distance from the elastic axis (46 c) and the aerodynamic center (25 c). Therefore:

moment arm = (.46 -.25) C = .21 C

Note that c is a function of the position along the wing span. Thus:

Q₂ segment = "2 p U2 Cdx Sx, .21 C(x)2 Y(x) dx 82 (t) + - 1/2 p U Cax 5x2. 21 c(x) Y(x) 4(x) dx f2(t)

In matrix form:

where:

$$\begin{bmatrix} -Q_1 \\ Q_2 \end{bmatrix} = -u^2 \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} - u \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \dot{g}_1 \\ \dot{g}_2 \end{bmatrix}$$

H" = 0 H12 = "2 0 C2 5 x1 C(x) Y(x) dx H2, = 0 H22 = - "2 & C2 5x1 . 21 C(x) W(x) dx L = - 1/2 p Ce 1x, c(x) \$(x) dx Liz = - 12 p ce Sx, C(x) Y(x) Y(x) dx y(x) = .21 c(x) Liz = - "2 p Ce, Jx. 21 C(x) 4(x) dx LZ1 = "2 9 CER SX, 21 C(x) & (K) dx Liz = 1/2 p ce sx2. 21 c(x)2 y(x) 4(x) dx L22 = 1/2 p ce Jx. (.21)2 c(x) 4(x) dx

Calculation of Loads

H .. = 0

H12 = "2 p clx 5x, c(x) 4(x) dx

Note: assuming $p + C_{2}$ are constant across the span, the integration can be performed from $x_1 = 0$ to $x_2 = br_2 = 474$ in.

For SLS, g = .002377 5103/5+3

C(X) = Z0Z.8 - .3215 X (in)

CR = .105 deg = 6.016 rad"

H12 = 1/2 (.002377 510) (6.016 1/red) 10 (202.8 - .3215 x) 4(x) dx (in) $H_{12} = 228.2 \frac{\text{slog in}^2}{543} = .132 \text{ slog lin}$

H2, = 0

H22 = -1/2 p Ce Sx, . 21 c(x) 4(x) dx = -1/2 (.002377 5103) (6.016 1/206) (202.8 - .3215 x) 4(x) dx (in3) (728in) Hzz = - 3.284 slug

 $L_{ij} = -1/2 g Ce_{ij} \int_{X_{ij}}^{A_{ij}} c(x) \phi(x) dx$ =-1/2 (.00 2377 5109) (6.016 1/26) 50 (202.8 - . 3215 x) \$(x) dx (in2) \frac{f+3}{1728in} L .. = - . 141 slustin

6

L12 = - "2 p Ce Sx, . 21 c(x) = 4(x) dx Ln = - 3.284 slug

L21 = 1/2 9 CR SX2 . 21 C(x)2 Ø(x) dx = "2 (.002377 510)) (6.016 "rad)) (474) (202.8 -. 3215 x) 4(x) dx (in3) (528 in3) Lz1 = 3.042 slug

Lzz = "12 p ce, 5 x, (,21)2 c(x)3 4(x) dx = 1/2 (.002377 (6.016 1/2d) 5 (.21)2 (202.8 - .3215 x)3 4(x) dx (in4) (+2) Lzz = 89.61 slug.in

Thus:

$$\begin{bmatrix} -Q_1 \\ Q_2 \end{bmatrix} = -u^2 \left(\frac{44}{3^2} \right) \begin{bmatrix} 0 & .132 & \frac{5103}{10} \\ 0 & -3.284 & \frac{5103}{10} \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} + \\ -u \left(\frac{44}{5} \right) \begin{bmatrix} -141 & \frac{5103}{10} & -3.284 & \frac{5103}{10} \\ 3.042 & \frac{5103}{10} & \frac{89.61}{10} & \frac{5103}{10} \end{bmatrix} \begin{bmatrix} \hat{g}_1 \\ \hat{g}_2 \end{bmatrix}$$

$$\begin{bmatrix} -Q_1 \\ Q_2 \end{bmatrix} = -u^2 \begin{bmatrix} 0 & 1.584 & 16 \\ 0 & -39.41 & 16 & in \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} - u \begin{bmatrix} -.141 & 16.5/in & -3.284 & 16.5 \\ 3.042 & 16.5 & 89.61 & 16.5 & in \end{bmatrix} \begin{bmatrix} \hat{g}_1 \\ \hat{g}_2 \end{bmatrix}$$

Segment Data

Segment	Span (in)	W (16)	Ix (in4)	Iy (in4)	Iz (in4)	J(124)
1	35	422	7270	1220	40,900	9710
2	73	606	6480	1090	36400	42880
3	24	245	3780	618	22400	76380
-	83	659	1750	Z93	9790	11540
5	63	327	1300	218	7300	8600
-	65	211	747	125	4200	4947
<u> </u>	65	106	249	42	1400	1649
7		•	134	72	752	884
8	66	66	,,,		,,,	•

Segment	m (16 52/12)	I 0 (16.52)	EI (16 in2)	GJ (16. in2)
\	. 0312	. 319	1.08 × 10"	2.70 110"
7	.0215	. 284	7.59 * 10'	7.40 1 10"
3	.0286	.162	5.90 + 10"	1.48 = 10"
4	.0205	. 0766	Z.59 × 10°	6.46 \$ 1010
5	.0134	.0570	1.92 * 100	4.82 100
6	,00840	.0327	1.11 =1010	עי דר. <u>כ</u> "
7	.00422	,0110	3.69 \$10	9.23 1109
8	.00259	.00575	1.98 * 107	4.96 *109

$$J = I_{x} (in^{4}) + I_{z} (in^{4}) = in^{4}$$

$$m = \frac{W(1b)}{5pan(in) 32.2 (f^{4}/s^{2}) 12 (i^{4}/f_{t})} = \frac{1b \cdot s^{2}}{in^{2}}$$

$$I_{\theta} = M \left(\frac{16 \cdot 5^{3} / \text{in}^{4}}{19 \cdot (\text{in}^{4})} \right) = 16 \cdot 5^{3}$$

$$M = \frac{.101 \left(\frac{16}{/ \text{in}^{3}} \right)}{32.2 \left(\frac{f}{7} / 5^{2} \right) 12 \left(\frac{17}{7} / 5^{2} \right)} = .000261 \frac{16 \cdot 5^{3}}{\text{in}^{4}}; \text{ For aluminum}$$

Calculation of the Mass matrix

m = Som prdx

For each segment of the wing, m will be the average value for that segment. Thus

Segment	m (Misecz)	S. OZdx (in)	m 50 02 dx (11 302)
1	. 0312	. 002	.0000624
2	.0215	. 597	,0128
3	0286	. 968	, 0 27 7
4	,0205	13.85	, 284
5	.0134	33.88	.454
6	.00840	74.34	. 624
7	.00422	133,7	.564
8	00 259	216.6	, 561

Z = 2.528

Thus :

 $m_{zz} = \int_0^L I_{\Theta} Y^2 dx$

For each segment, Io will be the average value for that segment.

Segment_	I. (16.32)	Jo 42 dx (in)	IS SO 42 dx (16 57 in)
1	, 319	. 157	.0501
Z	. 284	4.338	1, 23.
3	.162	3.608	. 584
4	. 0766	24.76	1, 90
5	. 0570	33.47	1.91
6	. 0327	47.60	1.56
7	. 0110	58,12	. 639
8	.00575	64.96	. 374
			5- 025

Z= 8.25

Thus:

 $m_{12} = m_{21} = \int_0^L y_{\theta} m \phi \Psi dx$

For the wing structure, Yo = 0. Thus, M,z = 0.

Note, the first set of calculations is for the wing only (without stores) When stores are added, the value for yo may change, depending on the location of the store. This will be discussed later.

Calculation of the Stiffness matrix.

 $K_{ij} = \int_{0}^{L} EI \phi_{ixx}^{2} dx$

For each segment, EI will be an average value for that segment.

ر د د د د د	EI (Win2)	Jo prv dx (1/in3)	EIS. Oxx dx (U)
Segment	1.08 × 1011	3.09 × 10 -8	33 <i>4</i> 0
,	9.59 × 1010	4.52 *10 -8	4330
2	5.90 × 1010	1.00 +10-8	590
3	2.59 ×10°	Z.11 ×10-8	546
4	1,92 × 1010	6.33 × 10-9	122
ے •	1.11 × 1000	2.09 * (6-9	23.2
6	3.69 × 109	3.57 ×10-16	1.32
,	1.98 × 107	1.35 ×10-"	, 03
8	ί. 10 - το	,	

Z = 8950

Thus,

K, = 8950 W/in

K2, = 5 GJ 4,2 dx

Segment	65 (16:n2)	So Yix dx (1/in)	62 1º
	2.70 × 10"	3.83 * 10 -4	1.
2	Z.40 +10"	7.54 * 10-4).
3	1.48 *10"	7.24 1/0-4	3,
4	6.46 ×16"	6.40 × 10-4	4.
5	4.82 100	3.24 110-4	1.
<u>.</u>	2.77 1100	1.91 + 10-4	5
7	9.23 1107	7.56 + 10-5	6
28	4.96 + 109	1.15 × 10 ⁻⁵	5.
_	•		<u></u>
			_

5.29 1106 301 + 8P.

2= 3.80 ×108

Stability Calculations

From Dr. Locke's formulation:

$$\left| \left[K \right] + u^{2} \left[H \right] + \lambda u \left[L \right] + \lambda^{2} \left[M \right] \right| = 0$$

$$\begin{bmatrix}
8750 & (16/in) & 0 \\
0 & 3.80 \times 10^{8} & (16 in)
\end{bmatrix} + \begin{bmatrix}
0 & 1.58 & u^{2} & (16) \\
0 & -37.4 & u^{3} & (16 in)
\end{bmatrix} + \\
+ \begin{bmatrix}
-.141 & \lambda u & (16/in) & -3.28 & \lambda u & (16) \\
3.04 & \lambda u & (16) & 87.6 & \lambda u & (16 in)
\end{bmatrix} + \begin{bmatrix}
2.53 & \lambda^{2} & (16/in) & 0 \\
0 & 8.25 & \lambda^{2} & (16 in)
\end{bmatrix} = 0$$

$$\begin{bmatrix} 8750 & -.141 \, \lambda u^{-1} + 2.53 \, \lambda^{2} \\ 3.04 \, \lambda u \end{bmatrix} = \frac{1.58u^{2} - 3.28 \, \lambda u}{3.80 \times 10^{6} - 39.4 \, u^{2} + 89.6 \, \lambda u + 8.25 \, \lambda^{2}}$$

NATIONAL | MANUSA

```
(8950 - .141 \lambda u + 2.53 \lambda^{2})(3.80 \times 10^{8} - 39.4 u^{2} + 89.6 \lambda u + 8.25 \lambda^{2})
- 3.04 \lambda u (1.58 u^{2} - 3.28 \lambda u) = 0
```

$$3.40 \times 10^{12}$$
 - $353000 \, u^2$ + $802000 \, \lambda u$ + $73800 \, \lambda^2$ + - $5.36 \times 10^7 \, \lambda u$ + $5.56 \, \lambda u^3$ - $17.6 \, \lambda^2 u^2$ - $1.16 \, \lambda^3 u$ + + $9.61 \times 10^3 \, \lambda^2$ - $99.7 \, \lambda^2 u^2$ + $227 \, \lambda^3 u$ + $20.9 \, \lambda^4$ - $4.80 \, \lambda u^3$ + $9.97 \, \lambda^2 u^2$ = 0

 $\lambda^{4}(z_{0.9}) + \lambda^{3}(-1.16u + 227u) + \lambda^{2}(73800 - 17.6u^{2})$ + $4.61 \times 10^{6} - 99.7u^{2} + 9.97u^{2}) + \lambda(802000u - 5.36 \times 10^{7}u)$ + $5.56 u^{2} - 4.80 u^{3}) + (3.40 \times 10^{12} - 353000 u^{3}) = 0$ $20.9 \lambda^{4} + 226 u \lambda^{3} + (9.61 \times 10^{8} - 102 u^{2}) \lambda^{2} +$

+ (-5.28 x107 u + .76 u3)) + (3.40 x1012 - 3.53 x105 u2)

From Routhe's criterion, A,B,C,D,E 20 3^2 : 9.61 x10⁸ -102 u² ≥ 0 9.61 x10⁸ = 102 u²

u = 3069 ft/s = 1817 Kts

u ? 8335 ft/s = 4935 K+s

 $\lambda^{6}: \qquad 3.40 \times 10^{12} - 3.53 \times 10^{5} u^{2} \ge 0$ $3.53 \times 10^{5} u^{2} \le 3.40 \times 10^{12}$ u = 3104 ft/s = 1840 Kts

To check the mass and stiffness matrices:

$$\omega = \sqrt{\frac{K}{m}}$$

For bending mode:

$$w = \sqrt{\frac{K_{ii}}{m_{ii}}} = \sqrt{\frac{8750 \text{ lb/in}}{7.528 \text{ lb·s}^2/\text{in}}} = 59.5 \text{ rad/sec}$$

For a uniform beam:

$$\omega = \frac{1.875^2}{L^2} \sqrt{\frac{ET}{m}}$$

Taking average values for EI and m.

$$EI = 5.5 \times 10^{10} \text{ lb.in}^2$$

 $m = .017 \text{ lb.s}^2/\text{in}^2$

$$\omega = \frac{1.875^2}{474^2 (in^2)} \sqrt{\frac{5.5 \times 10^{10} (16 \cdot in^2)}{.017 \cdot 16 \cdot 5^2 / in^2}} = 28.1 \text{ rad/sec}$$

two values for w: (59.5 + 28.1) arc close enough to indicate the bending mode was done correctly with the giving data.

For the torsional mode:

$$w = \sqrt{\frac{K_{12}}{M_{12}}} = \sqrt{\frac{3.80 \times 10^8 \text{ Hrin}}{8.25 \text{ W} \cdot \text{s}^2 \cdot \text{in}}} = 6800 \text{ rad/sec}$$

For a uniform beam

where:
$$C = J = 24500 \text{ in}^4$$
 (average value)
 $\mu \text{Ip } 2 \text{ Ip} = .16 \text{ lb · sec}^2$ (average value)
 $G = 5.6 \times 10^6 \text{ lb/in}^2$

$$W = \frac{\pi/2}{474 \text{ (in)}} \sqrt{\frac{24500 \text{ (in}^4)}{.16} \frac{5.6 \text{ kio}^6 \text{ (16/in}^2)}{.16}}$$

w = 3100 md/sec

again, these two values of w for the torsional mode are close enough to indicate it was done correctly for the given data.

APPENDIX E

The purpose of this appendix is to show the calculations done to determine the life cycle costs of the Good, the Bad, and the Ugly aircraft. The appendix consists of engineering hand calculations and Lotus spreadsheets. The Table of Contents below shows what is included in this appendix.

Table of Contents

Content	page
1. AMPR Weight Calculations	E1
2. Engine Cost Derivation	E2
3. Avionic Cost Estimation	E3
4. Cost Estimation Spreadsheets	E10
Hand CalculationThe GoodThe BadThe Ugly	E10 E14 E18 E22
5. Operations and Support Calculations	E26
6. Effects of Commonality Calculations	E30

B. Car	AF 622	2/20/89	Cost - Input Variables
The fellowing and model:			the Kirolai cost
Colubation of A	MPR Weight:		
1) Lording Geor 2) Engines + Georber 3) Éngine Starter 41) (celiny Fluid 3) Fuel System 6) Instrumentation, 7) Floctorial System 8) Aviences 9) Gun 10) A/C, Press. 11) APU 12) TF+0	Geod 1,174 4,000 46 0 564 461 505 0 1200 161 0	Bad 700 1,800 16 0 361 289 376 0 1,200 130 0	100 800 4 0 737 178 254 0 1200 111
Subtatal Empty Woight AMPR Woight	E, 309 20,592 12,283	4, 981 72,3 5 8	3,139 6,448 3,809
AMPR /Empty	0.60	0,60	0.55

	Engine SHD	# of Inging	Prop. Dia. (f4)	# of Propelles
Good	6,000	ړ	B.18	2
Bod	2,500	2	7.16	2
Ugly	2,000	1	7.10	1

Maximum Spood at Best Altitude = 250 Hs for Good. Bad, and Ugly

The Fellowing cost data was obtained from References and

From Roterence :

Engines SHP 635 850 1,461 2,180

2,810

(ost (1984 dollars) # 230,000 # 435,000 # 630,000 # 965,000

A rurve was fit between these points to obtain the cost of the engines for the Bud and Ugly airplanes (SHP = 2,500).

From Reference, the cost for turbo-tun engines was obtained. The cost of turbo-prop engine was estimated to be similar to the turbo form cost by Mr. Neal (see Rof.). So,

Engine Thrust	Engine SHP	Cost (1989 dollors)
12,000	4,138	\$ 1,000,000
25,000	8,621	\$ 3,000,000
40,000	13,791	\$ 4, 500,000
60,000	20,690	\$ 7,000,000

The ratio between engine thrust and engine sho was token from Reference, Figure, page. A rurve was fit detween these points to obtain the engine cost of the Good airplane (SHP=6,000).

E2

From the AE G21 Final Report, the following axionic and instrumentation components, are to be included and so their cost must be estimated:

Component Attack Rodar' Losor Spot Tracker Infra-Rod Detector Mission Computer Communications / Radio Manufacturer/Model Wooding house WX-50 Martin-Marrietta AN/AAS-35(V) Texas Instruments AN/AAR-42 'Delso Electronics M372 · Collins AN/ARC-186(V)/VHF-186

Remote Transceiver Hulf Size Remote Control Punel Mainted Transceiver

'Kearfold SKN-2416 Hazelfine AN/APX-72 Garrett A-10 ADC Tracer AN/ALE-40(V)

Collins AL-55B

SFENA WGD-2

Inertial Novigator IFF Transponder Air Data System Possive ECM (Chaff/ Flare)

Radio Allimeter

CRT (+no)-

HUD (canopy projection)

From the Magnizine, Business, and Commercial Aviation, April 1987 re intermation (manufactures, weight, price, etc.) is available. Following are the graps that the aviences are divided into: Automatic direction finders 154 range havigation systems 158 Nayion 169 YAF VHF Panel-mounted now receivers VHF Remote-manted now receivers 170 Remote-manted nov receivers 171/172 Panel-manted transceivers VHF 172,773 Remote-mainted tranceivers 173,174 Novigation management systems 174, 176, 178 · HF Transceivers 178,180 · Distance massaring equipment 181,182 183 · Iransponders · Encoding Altimeters / Digitizers · Horizon ful Situation Indicators (Compose Systems 184,185 186 telephone systems 187 · Airborne · Rodio altimotois 187,188 defection, systems 188,191 · Thunderstorm · Microwave landing system receivers · RNAV (Area navigation) systems · Worthor and 191 192,193,194-195 194-195, 196-197 Weather repar · Bosic autopilots 200-201 · Integrated' flight control systems 206-207.

The ovienic component will be estimated by choosing the exort component or a component similar to it. The components not available from the above reference will be stimuted in determined via conversation with an industry perssonnel.

The Following ramponent (because they are military orientated), have to be determined without the use of the above reference:

- · attock rador
- · loser spot tracker
- · infra-red detector
- · CRT
- · HUD
- · Pussive ECM (Chaff/Flare)
- · Air data system

Mission Computer

A mission computer worn't found in BCA, April 1987, so to estimate its rost, the integrated Flight control system costs will be used.

the average cost of seven. IFCS will be used as the cost of the mission computer for the Good, Bad, and the Uply. The models and costs are:

Manufacturer	Model	Cost	
King/Bendix	KFC 250 KFC 325 KFC 400	\$ 59,145 \$ 58,415 \$ 83,480	
Honey well	SP 7-400 5P2-4500 5P2-500-200 A SP2-8000 SP2-600	\$ 114,251 \$ 114,251 \$ 115,999 \$ 140,858 \$ 243,994	

Average rost = mission computer rost = \$132,913

Communications / Radio

Remote Tranceiver: The average cost of ull the models listed will be used as the cost.

. Average Cost = \$8,215 -

Collins VHF-186: The price for the Collins VHF-253 will be used instead:

Cost = \$ 2,955=

Panel Manted Transiever: The cost of this component will be stimated using the average cost of the listed VHF Panel-manted transceivers in BCA, April 1987.

Average (ost = \$1,800 -

* BCA = Business and Commercial Aviation

22-142 22-144

SWPA0

Inortial navigator

The cost of the inertial navigator will be estimated by averaging the cost of the long-range navigation systems listed in BCA, April 1987.

Average (ost = # 46,015=

IFF Transponder

The rost of the transponder will be estimated using the average cost of the transponders listed in BCA, April 1981.

Average (ost = # 3,780 -

Rodio Altimeter

The radio altimeter specified in the AZ GOI report was found in BCA, April 1987:

Cost = \$ 12,815 =

CRT

The cathode ray tube (CRT) cost was obtained from Bendix/King. A 3"r5" tube costs \$ 15,125 and the symbol generator for it costs \$ 30,185. With this a round the was estimated to be \$ 25,000 and the symbol generator # 38,000 so the cost for one unit in 1989 dellas s:

Cost = \$63,000 / unit

Total Cost Fr (RT) = \$ 126,000 -

Air Data System

The air data system that Bendix / king sells rosts: Cost = # 4,50022-142 22-144

HUD

The Heads up display rost was obtained by rampaing it to un EFIS (Electronic Flight Instrumentation System) that Bendix/king sells. The price given by Bondix/king was Cost = \$ 118,885 (1989 dollars)=

Attack Rodar

The affect rada- cost will be estimated by assuming that its next is similar to a weather radar. The average cost of a weather radar, April 1907 is

Cost = #33,381-

The remaining avienic components:

- loser spot tracker - infra-red detector

- possive ECM (chaff/flore)

ast have to be estimated using an educated guess, since no other method is available.

The cost of each of these components will assumed (orbitrarily) to be \$25,000 so:

(est= \$75,000.

The following is cost in 1989 do	a summary of the llars:	avicances rost, including the
	1987 Cost	1989 Cost
Mission Computer	\$ 132,913	# 142,876
Communications (Radio		
Remote Transiner	# 8,215	# 8,831
Collins VHF-186	# 2,955	\$ 3,176
Panel Mantal Trumping	er \$1 1,800	\$ 1,935
Inertial Havigater	\$ 46,015	\$ 49, 464
IFF Transponder	# 3,780	# 4,063
Radio Altimeter	# 12,216	\$ 13,776
(RT (2)	- -	\$ 126,000
Air Dota System		\$ 4,500
AUD.		\$ 118,885
Altock Radar	#33,3BI	\$ 35,883
Loser Spot Tracker	~ ~	\$ 25,000
Infra-rod Detector		\$ 25,000
Possive ECM		\$ 25,000

1989 /1967 = 121.9 / 113.4 = 1,076

So, the total avienies and instrumentation cost for the Good, Bod, and Uply airplanes in 1984 dollars is: Total (ost (1984 dollars) = \$384,389

Brion Cx AEGH 4/10/189 Avionits Cost Raision 1

The following is a revision of the axionics ast which is done to include the following new sources of information:

1) The Bendix/king Suggested Retail Price List Junuary 1, 1984

and 2) Intermation received from, company representatives at the society of Automotive Engineering (Acrospane Division) contenence in Witicho, KS on April 11, 1989.

The following lists, the previous cost estimate and the updated estimate:

Component	lost Istimate	Updated Istimate
Mission Camputer	# 142,876	# 142,876
Communications/Radio Remote Transcriver	# 8,23/	# 8,831 A 3,176
Collins VAF-186 Pagel-Mented Trons.	# 3,176 # 1,935	A 1, 935 A 19,464
Inertial Navigator IFF Trunsporder	# 49,464 # 4,063	# 6,000 # 10,000
Rodio Altimeter (RT (2) Air Duta System	\$ 13,776 \$ 126,000 \$ 4.500	# 126,000 # 60,000
HUD .	\$ 118,055 \$ 25,000	# 350,000 # 25,000
Loser Set tracker Infra-Red Infater Passive ELM	\$25,000	# 25,000 # 25,000
Attock Rodar Cooks + Instrumentation	#35,823 #0	# 2,000,000 *
	7	

* This component rost update is the most significant. An axionic erginour at the conference said the minimum that a modern day multi-function attack rudor could be bought for is \$3 million. Assuming the rudor for those airplanes to be loss sephisticated than those used an airplanes such as the F-16, F-18, F-14, \$2 million was chosen.

So, the avienic rests are:

Good + Bad : \$ 3,148,345

Ugly: \$ 948,345 *

*(The uply does not love a radar)
(10% was added for amponents to meet military standards.)

The following is a sample colculation of the Nicolai cost model for the Good air plane:

Input:

AMPR Weight = A = 12,283 lbs.

Max. Spord = S = 250 kts

Q = 3

Q = 500

Flight Test Rate = 1/month

Production Rate = 5/month

Air framo Eng. = 848.3 / hour

Tooling = \$34.6 / hour

Manufacturing = \$46.9 / hour

89/70 dollar = 3.14

89/79 dollar = 1.68

89/81 dollar = 1.35

1. Engineering House

Development

 $D = 0.0396 A^{0.791} 5^{1.526} Q_{D}$ $D = 0.0396 (12,283)^{0.791} (250)^{1.526} (3)^{0.183}$ D = 579,232 hors $(cost = (48.5)(379,232)(10^{-6}) = 18.317$

Production

 $E = 0.0396 \ A^{0.791} \le 1.526 \ C^{0.63} - D$ $E = 0.0396 \ (12,203)^{0.791} \ (250)^{1.526} \ (500)^{0.83} - 379,282$ E = 587,938 $Cost = (48.3)(587,938)(10^{-6}) = 26.397$

2. Development Support

D= 0.008325 A 5 Q 0.873 (350) 1.89 0.83

D= 0.008325 (12,283) 0.873 (250) 1.89 (3)

D= 1.54, 11970 dellors)
1989 (ost= 4.836

3. Flight Test operations

F = 0.001244 + 1.16 = 1.371 = 1.281 $F = 0.001244 = (12.283)^{1.16} = (202)^{1.371} = (3)^{1.281}$ $F = 0.546 = (1270) = (3)^{1.371} = (3)^{1.281}$ = 1989 = (3) = (3) = (3)

22-142 22-144

Development evelpment

To = 4.0177 A 50.899 Q 0.178 R 0.066

To = 4.017 (12,023) 0.784 (250) 0.899 (3)

To = 424,696 hars (ost = 34.6)(929,646; (10-6)

T= 4,0127 (12,283)0.754 (250)0.899 (500)0.178 (5)0.000 - 929,696 Production T= 1,640,475 Cost = (3,4.6)(1,649,415)(100) Cost = 56.76

Manufacturing Labor 5.

> Development LD = 28.984 A .74 S 0.543 (3) 0.524
>
> LD = 28.984 (12,223) 0.74 (252) 0.543 (3) 0.524 Lo= 1,097,328 hers Cost= (26.9)(1,047,328)(10-6) Cost = 29.518

Production L= 28.984 A 0.74 S 0.543 0.524 - LO L= 28.984 (12,283)0.74 (28)0.543 (500)0.524 - 1,097,328 L = 14,919, 825 Cost = (26.9)(14,919,825)(10-6) Cost = 401,343

6. Quality Control

Development 6/C= 0.13+L0 a(c = 0.13 (1,047, 32E) Q/C = 142,633 hars Q/C = 3.837

Production 0.13 x L a/c = 0.13 (14,919,825) a/c= 1,919,577 alc = 52.175

```
7. Material and Equipment
        MD = 25,672 A -689 5 0.639 GD 0.792
       MD = 25.672 (12,203) 0.669 (250) 0.634 (3) 0.792
        Mo= 1.262 (1970 dellars)
  1989 Cost = 3,964
  M= 25.672 + 0.004 50.004 (252) 0.004 (500) 0.793 - 1,262,366
           72.592. (1970 dollars)
```

8. Engine and Avianies

1984 (ost = 227.939

Engine:
Prop Cost: Cost (Prop = #35 11 Dp (Ep (Dp)) (at/Pry= #350.11 (8.18)2 (6,000 /8.18) (ost / Prop = 0.040 (1979 dollar) 1989 (ast /AC = (2)(0.040)(1.62) = 0.135

Ingine Cost: Cost leng = 1.9089 * 16 (SHP/64) 0.8
Cost leng = 1.9089 (10°) (6,000 164) 0.8 (of long = 1.269 (1981 dollars) 1989 (cst (AC = (2)(1.269)(1.35)= 3.425

Total Cost (AC = 3.405 + 0.135 = 3.560

Pevelepment = 10.68 Preduction = 1,780

Avienics:

Development:

(ost = (584,384/system) (3 systems) (ost = 1.753

Production:

(cst = (584,389 layston) (600 systems) (cst = 292.195

B. (a	AE GAD	3/20/89	Vost - Sample	Calculation
9. Total DT+E C	îcs+		,	
Air Frame Fra. Development Suppo Flight Tool AC			18.317 4,043	
Engine + Aurants Man Lubor Material + Equip			/2.433 29.518 3.969	
Twolings GIC Flight Test Grandi Test Facilities			32.167 3 .237 1.714 0.000	
ies incitities		Subtotal	106,787	
		Profit	10.679	
	Total	DT + E Cost	117,466	
16. Total Production	and	Unit Cost		
Engine and Avienia Manufacturing Labor Muterial and Egraps Sustaining Eng. Tocking QIC Manuf. Facilities	nent		2,072.195 401.343 227.939 28.397 36.76 52.175 0.000	<u>.</u>
	5 .6	tetal	2, 638.84	
	Pro	fit	2 65.684	
Tutal	Product	lion lost	3,121.73	
Spreading at DT	+E over	ol/ 500 d	pireratt:	
1989 Unit Cost:		12.73/500 + 1= 6.480	117.466 /500	•
Note: The input values values regime match, but i	in the and avi	cournent spreads	shoot are updo results do no ntical.	fod F

Nicolai Cost Model The Good

Avionics: 3148345 per system

NOTE: All cost figures are expressed in millions of dollars.

1. Engineering Hours

Development:

```
D = \emptyset.0396*(A^0.791)*(S^1.526)*(QD^0.183)

D = 379231.7 hours

Cost = 18.3
```

Production:

```
E = \emptyset.\emptyset396*(A^0.791)*(S^1.526)*(Q^0.183) - D

E = 587938.6 \text{ hours}

Cost = 28.4
```

2. Development Support

```
D = \emptyset.\emptyset\emptyset8325*(A^0.873)*(S^1.89)*(QD^0.346)
D = 1.5 (1970 dollars)
1989 Cost = 4.8
```

3. Flight Test Operations

4. Tooling

Development:

$$TD = 4.0127*(A^0.754)*(S^0.899)*(QD^0.178)*(R^0.066)$$

 $TD = 929696.0 \text{ hours}$
 $Cost = 32.2$

Production:

$$T = 4.0127*(A^0.754)*(S^0.899)*(Q^0.178)*(R^0.066)$$

 $T = 1728597$ hours
 $Cost = 59.8$

5. Manufacturing Labor

Development:

$$LD = 28.984*(A^0.74)*(S^0.543)*(QD^0.524)$$

 $LD = 1097328 \text{ hours}$
 $Cost = 29.5$

Production:

$$L = 28.984*(A^0.74)*(S^0.543)*(Q^0.524) - LD$$

 $L = 14919825$ hours
 $Cost = 401.3$

6. Quality Control

Development:

Production:

7. Material and Equipment

Development:

$$MD = 25.672*(A^0.889)*(S^0.624)*(QD^0.792)$$

$$MD = 1.3 (1970 dollars)$$

$$Cost = 4.0$$

1989 Cost =

Production:

$$M = 25.672*(A^0.889)*(S^0.624)*(Q^0.792)$$

 $M = 72.6 (1970 dollars)$

1989 Cost = 227.9

8. Engine and Avionics

Engines:

Propeller Cost: Cost/prop = $$350.11*(Dp^2)*(Ep/Dp^2)^0.12$

Cost/prop = 0.04 (1979 dollars)

1989 Cost/aircraft = Ø.14 (two propellers per engine)

Engine Cost: Cost data from Pratt & Whitney

Cost/eng = 1.8 1989 Cost/aircraft = 4.9

Total Cost/aircraft = Prop. Cost/AC + Eng. Cost/AC = 5.1

Development: Assume 3 engines per flight test aircraft

1989 Cost = 15.2

Production:

1989 Cost = 2538.9

Avionics:

Development:

Cost = 9.4

Production:

Cost = 1574.2

9. Total DT&E Cost		
Airframe Engineering. Development Support Flight Test Aircraft. Engines & Avionics Manufacturing Labo Material & Equipme Tooling Quality Control Flight Test Operation	24.7 r 29.5 nt 4.0 32.2 3.8	18.3 4.8 94.2
	Subtotal	119.0
Profit (10 percen	t of Subtotal)	11.9
Т	otal DT&E Cost	130.9
,	•	
10. Total Production and Unit	Cost	ŕ
Engine and Avionics Manufacturing Labor Material and Equipmen Sustaining Engineerin Tooling Quality Control	t	4113.1 401.3 227.9 28.4 59.8 52.2
	Subtotal	4882.8
Profit (10 percen	t of Subtotal)	488.3
Total P	roduction Cost	5371.1
With the RDT&E cost to be the selling price is increased		500.0 aircraft illion per a/c.
The 1989 unit cost (at	500.0 units) is:	
5371.1 / 500.0	+ Ø.3	= 11.00

Last Revised: 04/30/88

```
Nicolai Cost Model
The Bad
```

```
= 1989.Ø
           Time
                              = 21833.0 lbs
           WTO
           AMPR
                              = 7377.0 lbs
                                    250.0 kts
           Maximum Speed =
Flight Test Quantity, QD = 3.0
Production Quantity, QP = 500.0
                                   1.0 per month
8.3 per month
48.3 per hour
34.6 per hour
26.9 per hour
Flight Test Rate
                              =
                               =
Production Rate
Airframe Engineering =
Tooling =
Manufacturing =
1989/1970 Dollar =
                                       3.1
     1989/1979 Dollar
                               =
                                        1.7
     1989/1981 Dollar
                                        1.4
                               =
      Engine (SHP): 2500.0
Prop Diameter(ft):
                           7.1
```

Number of Engines: 2.0

Avionics: 3148345 per system

NOTE: All cost figures are expressed in millions of dollars.

1. Engineering Hours

Development:

```
D = \emptyset.\emptyset396*(A^0.791)*(S^1.526)*(QD^0.183)
  D = 253371.5 \text{ hours}
Cost =
             12.2
```

Production:

```
E = \emptyset.\emptyset396*(A^0.791)*(S^1.526)*(Q^0.183) - D
  E = 392812.3 \text{ hours}
Cost =
             19.0
```

2. Development Support

```
D = \emptyset.\emptyset\emptyset8325*(A^0.873)*(S^1.89)*(QD^0.346)
         D = 1.0 (1970 dollars)
1989 Cost =
                     3.1
```

3. Flight Test Operations

$$F = \emptyset.\emptyset\emptyset1244*(A^1.16)*(S^1.371)*(QD^1.281)$$

 $F = \emptyset.3 (1970 dollars)$
1989 Cost = $\emptyset.9$

4. Tooling

Development:

TD =
$$4.0127*(A^0.754)*(S^0.899)*(QD^0.178)*(R^0.066)$$

TD = 629756.3 hours
Cost = 21.8

Production:

$$T = 4.0127*(A^0.754)*(S^0.899)*(Q^0.178)*(R^0.066)$$

 $T = 1170915$ hours
 $Cost = 40.5$

5. Manufacturing Labor

Development:

LD =
$$28.984*(A^0.74)*(S^0.543)*(QD^0.524)$$

LD = 752458.1 hours
Cost = 20.2

Production:

$$L = 28.984*(A^0.74)*(S^0.543)*(Q^0.524) - LD$$

 $L = 10230797$ hours
 $Cost = 275.2$

6. Quality Control

Development:

Production:

7. Material and Equipment

Development:

$$MD = 25.672*(A^0.889)*(S^0.624)*(QD^0.792)$$

$$MD = \emptyset.9 (1970 \text{ dollars})$$

Production:

$$M = 25.672*(A^0.889)*(S^0.624)*(Q^0.792)$$

1989 Cost = 160.4

8. Engine and Avionics

Engines:

Propeller Cost: Cost/prop =
$$$350.11*(Dp^2)*(Ep/Dp^2)^0.12$$

$$Cost/prop = \emptyset.03 (1979 dollars)$$

Engine Cost: Cost data from Pratt & Whitney

$$Cost/eng = 0.8$$

1989 Cost/aircraft = 2.2

Development: Assume 3 engines per flight test aircraft

1989 Cost = 1.7

Production:

1989 Cost = 1127.4

Avionics:

Development:

Cost = 9.4

Production:

Cost = 1574.2

9. Total DT&E Cost

Airframe Engineering Development Support Flight Test Aircraft	12.2 3.1 58.6
Engines & Avionics 11.1 Manufacturing Labor 20.2 Material & Equipment 2.8 Tooling 21.8	30.0
Quality Control 2.6 Flight Test Operations	0.9
Subtotal	74.9
Profit (10 percent of Subtotal)	7.5
Total DT&E Cost	82.4

10. Total Production and Unit Cost

Engine and Avionics Manufacturing Labor Material and Equipment Sustaining Engineering Tooling Quality Control	2701.5 275.2 160.4 19.0 40.5 35.8
Subtotal	3232.4
Profit (10 percent of Subtotal)	323.2

With the RDT&E cost to be spread out over 500.0 aircraft the selling price is increased by 0.2 million per a/c.

Total Production Cost 3555.7

The 1989 unit cost (at 500.0 units) is:

3555.7 / 500.0 + 0.2 = 7.28

Nicolai Cost Model The Uqly

Last Revised: 04/30/88

```
Time
                       = 1989.Ø
        WTO
                       =
                          10663.0 lbs
        AMPR
                          3089.0 lbs
        Maximum Speed =
                            250.0 kts
Flight Test Quantity, QD =
                              3.Ø
Production Quantity, QP =
                           500.0
Flight Test Rate = Production Rate =
                             1.0 per month
Production Rate
                       =
                             8.3 per month
Airframe Engineering
                       =
                            48.3 per hour
            Tooling
                       =
                            34.6 per hour
      Manufacturing
                       =
                            26.9 per hour
    1989/1970 Dollar
                       =
                             3.1
    1989/1979 Dollar
                       =
                             1.7
   1989/1981 Dollar
                       =
                              1.4
    Engine (SHP): 2500.0
Prop Diameter(ft):
                     7.1
Number of Engines:
```

1.0

Avionics:948345.0 per system

NOTE: All cost figures are expressed in millions of dollars.

1. Engineering Hours

Development:

```
D = \emptyset.\emptyset396*(A^0.791)*(S^1.526)*(QD^0.183)
  D = 127265.5 \text{ hours}
Cost =
               6.1
```

Production:

```
E = \emptyset.0396*(A^0.791)*(S^1.526)*(Q^0.183) - D
  E = 197305.0 hours
Cost =
          9.5
```

2. Development Support

```
D = \emptyset.\emptyset\emptyset8325*(A^0.873)*(S^1.89)*(QD^0.346)
         D =
               0.5 (1970 dollars)
1989 Cost =
                     1.4
```

3. Flight Test Operations

$$F = \emptyset.001244*(A^1.16)*(S^1.371)*(QD^1.281)$$

 $F = \emptyset.1 (1970 dollars)$
1989 Cost = 0.3

4. Tooling

Development:

TD =
$$4.0127*(A^0.754)*(S^0.899)*(QD^0.178)*(R^0.066)$$

TD = 323842.0 hours
Cost = 11.2

Production:

$$T = 4.0127*(A^0.754)*(S^0.899)*(Q^0.178)*(R^0.066)$$

 $T = 602124.3$ hours
 $Cost = 20.8$

5. Manufacturing Labor

Development:

LD =
$$28.984*(A^0.74)*(S^0.543)*(QD^0.524)$$

LD = 395108.6 hours
Cost = 10.6

Production:

$$L = 28.984*(A^0.74)*(S^0.543)*(Q^0.524) - LD$$

 $L = 5372095$ hours
 $Cost = 144.5$

6. Quality Control

Development:

Production:

7. Material and Equipment

Development:

$$MD = 25.672*(A^0.889)*(S^0.624)*(QD^0.792)$$

$$MD = \emptyset.5 (1970 dollars)$$

$$Cost = 1.5$$

1989 Cost =

Production:

$$M = 25.672*(A^0.889)*(S^0.624)*(Q^0.792)$$

 $M = 28.0 (1970 dollars)$

1989 Cost = 88.1

8. Engine and Avionics

Engines:

Propeller Cost: Cost/prop =
$$$350.11*(Dp^2)*(Ep/Dp^2)^0.12$$

1989 Cost/aircraft = 0.05 (one propeller per engine)

Engine Cost:

Cost/eng =
$$\emptyset.8$$

1989 Cost/aircraft = 1.1

Total Cost/aircraft = Prop. Cost/AC + Eng. Cost/AC =
$$1.1$$

Development: Assume 3 engines per flight test aircraft

1989 Cost = 1.7

Production:

1989 Cost = 563.7

Avionics:

Development:

Cost = 2.8

Production:

Cost = 474.2

9. Total DT&E Cost

Alrframe Engineering Development Support Flight Test Aircraft	6.1 1.4 29.3
Quality Control 1.4 Flight Test Operations	Ø.3
Subtotal	37.2
Profit (10 percent of Subtotal)	3.7
Total DT&E Cost	40.9

10. Total Production and Unit Cost

Engine and Avionics Manufacturing Labor Material and Equipment Sustaining Engineering Tooling Quality Control	1037.9 144.5 88.1 9.5 20.8 18.8
Subtotal	1319.6
Profit (10 percent of Subtotal)	132.0
Total Production Cost	1451.5

With the RDT&E cost to be spread out over 500.0 aircraft the selling price is increased by 0.1 million per a/c.

The 1989 unit cost (at 500.0 units) is:

1451.5 / 500.0 + 0.1 = 2.98

The following is the method prosonted in Nurclai for appealing and maintenance cost:

(est is bosed upon a 10 year period (usually). The fleet size and number of flying hers per year need to be estimated:

Floot Size = 100 (for now) Hying Hours por your = 300

Determine on average fuel flow por hear, gallon / hour: from HE Got Report I come the following stors: for cruso: Bud + Ugly - sfc = 0.48 16+116+hr-Bud + Ugly - sfc = 0.44 16+16+hr

Fuel Cost of JP-4 ~ \$0.85 / gallon The above gives the operating tuel costs.

For personnel costs:

For a fighter: 500 Flight Hours x 1.1 (Crew Rotio /AC)

So one ale fer one year requires 550 hours of crew time.

Aircrew Cost = (Flight House) (# wage) = Yearly Crew Cost

Maintenance Cost:

Annual Flight Hors Per AC = 300 (based on A-10 use) Maintenance Man Hours Per FH = 10 (based on A-10, F-15)

 $\frac{MMH}{A/C} = \frac{FH}{A/C} \cdot \frac{MMH}{FH} = (300)(10) = 3,000 \frac{MMH}{A/C} \cdot \frac{FC}{A/C} = 300$

with maintenance cost poor year, the yearly maintenance cost can be estimated.

So yearly operating cost is ((ost) operating = Fuel + Crew + Maintenance + Other

07 = 0.55 (FCM)

OT = 1. 222 FCM

AE GAZ 4/Elia Cont - Operating From Nices Mills, the BSFC of the engines of all three aircraft con taken as 0.38 lbs/hr/SHP. This is assumed to be static. At cruix the following is assumed:

1) BSFC = 0.42 lbs/hr/SHP

2) Engines eperate at 40% maxi pours For the Good: 0.42 16. (hr , 0.46 (12,000 5Ar) x 1 US. Gullen = 307. The gullens So (cst = 307.791 gullers x 80.85 = \$ 261.6 hr (Cost /AC)/year = (#261.6/hr)(300 hr) = #74,480 So for a flat of 100: Fuel Cest Hear= A 7,848,000 Aircrew Cost = (550 hrs) (tirren \$) From Fuctors, Fermius and Structure, from the Lin Force 182.,
Medel, the bose luber rate in 1977 dellars is
4'13.03 (hg, so in 1984 dellars: Aircrew # /hr = 2.0 (103.03/h) = 426.06 /hr Crow lost /year /AC = (550 hrs /year) (# 26.06 /hr) = # 14,333 / year /Ac So fer 100 alc: Crew Cost//por = \$1,433,300 Maintenance Cost = (3,000 MMH) (A Maintenance) From the Miscellanas, Factors table the labor rate per productive main tenance man hour. is in 1977 dollars # 16.03 lbr so in 1989 dollars: Mointenance (at / Hr = 2(#16.03/hr) = \$ 32.06/hr So Mand. (ast/year/A/c = 13,000 MMH/A/c)(# 32.06/HZ) = # 96,180./xxxx/A/c & for 100 circuatt: Moint. (ast/ year = A 9, 618,000 E28

4/8/89 AE GOD So, Fer one year the operating rost is: Cost / year = Fuel + Crew + Maint. + Other Cttor = 1.22 (Fuel + Com + Maint) = 1.20 (7,848,000: + 1,433,300 + 9,618,000) = \$23,044,4456 / Year Su Cost / Your = 7/048,000 + 1,433,300 + 9,618,000 + 23,094,945

Cost Hoar & 41, 994, 245

The spreadsheet shown in Chapter 10 uses updated inputs so the numbers may not be equal, but the method is identical to what is shown here.

The effects of commonality were investigated for the development, test and evaluation, and production using the following method:

Step 1 (alalate the unit rost (with no engines or avients) per 16 for 500 units of each airplane.

X/16 = Unit cost per pound of airplane

Calculate the unit cost (with no engines or avicances) por 10 for 1,500 units of each dirplane.

Y/16 = Unit rost per pand of airplane

Colculate the unit cost (with engines and aviences)
per 16 for 500 units of each airplane.

X'/16 = Unit cost por pand of airplane.

Step 4 Calculate the commonatity cost as:

Commonality Cost = X/1b - Common Weight (X/1b - Y/1b)

where the common weight rensists of weight which is common between the three aircraft. From Reference, those weights are:

Wing components: 864 16. Empeninge: 572 16. Nose section: 730 16.

2,166 16.

The spread shoot on the next page shows these calculations for varying production quantities. The results are draplayed graphically in the body of the report.

Commonality Cost Calculations

	Good	Bađ	Ugly
250			
x/lb	216.1	247	310.7
y/1b	128.5	147.4	186.5
Saving	189742	215734	269017
Commonality Cost	11.61	7.58	2.99
500			
x/lb	154.8	177.3	223.9
y/lb	94.9	109.1	138.5
Saving	129743	147721	184976
Commonality Cost	10.87	7.13	2.80
750			
x/lb	128.5	147.4	186.5
y/1b	80.1	92.2	117.3
Saving	104834	119563	149887
Commonality Cost	10.57	6.93	2.72
1000			
x/lb	113.1	129.8	164.5
y/lb	71.3	82.1	104.6
Saving	90539	103318	129743
Commonality Cost	10.38	6.82	2.67

### ### ### ### ### ### ### ### ### ##			And the second of the second o
2.25 (
		en e	
The second of th	er e	Surface description	
	the state of the s	10 (12 km)	
			And the second of the second o
AND ASSESSMENT OF THE PROPERTY	A STATE OF THE STA		1
The state of the s			2
Application of the second control of the control of			The second secon
The second secon			
	•		
The state of the s			
	· · · · · · · · · · · · · · · · · · ·		
And the second s			
Section 1. A secti			
		•	The second secon
The state of the s			
Approximate processing and the second of the			20
		to the second	
The second section of the sec			
A production of the second of		di .	
The state of the s		e de la companya de	
	the state of the s		
	<u>.</u>		
The state of the s			
A CONTROL OF THE PROPERTY OF T			The second secon
The second secon			
		* **. *	9. 200 200 200 200 200 200 200 200 200 20
The state of the s			Part of the second seco
man Anna Arra de la companya de la c			
The second of th		and the second second	
The second secon			
			The state of the s
			**
			The state of the s
Land Control of Contro			
The second of th			
Martin Ma			And the American Amer
Company Compan			A TELEVISION OF THE STATE OF TH

		Section 1	
		• • • • • • • • • • • • • • • • • • • •	A transfer of the second secon
The state of the s		en de la companya de La companya de la co	
1			
Compared to the Compared to			
			The second secon